Home
Class 12
MATHS
Coefficient of x in f(x)=|(x,(1+sinx)^3,...

Coefficient of x in `f(x)=|(x,(1+sinx)^3,cosx),(1,log(1+x),2),(x^2,(1+x)^2,0)|` is

A

`x-(a+b+c)`

B

`9x^2+a+b+c`

C

`a+b+c`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x \) in the determinant \[ f(x) = \begin{vmatrix} x & (1 + \sin x)^3 & \cos x \\ 1 & \log(1 + x) & 2 \\ x^2 & (1 + x)^2 & 0 \end{vmatrix} \] we will evaluate the determinant step by step. ### Step 1: Expand the functions First, we need to expand the functions \( \sin x \), \( \cos x \), and \( \log(1 + x) \) using their Taylor series around \( x = 0 \). - \( \sin x = x - \frac{x^3}{6} + O(x^5) \) - \( \cos x = 1 - \frac{x^2}{2} + O(x^4) \) - \( \log(1 + x) = x - \frac{x^2}{2} + O(x^3) \) Now, substituting these expansions into the determinant: \[ (1 + \sin x)^3 = (1 + x - \frac{x^3}{6} + O(x^5))^3 \] Using the binomial expansion, we only need the linear term: \[ (1 + x)^3 = 1 + 3x + 3x^2 + x^3 \] Thus, we can approximate \( (1 + \sin x)^3 \) as \( 1 + 3x + O(x^2) \). ### Step 2: Substitute the expansions into the determinant Now we substitute these approximations into the determinant: \[ f(x) = \begin{vmatrix} x & 1 + 3x & 1 - \frac{x^2}{2} \\ 1 & x - \frac{x^2}{2} & 2 \\ x^2 & (1 + x)^2 & 0 \end{vmatrix} \] ### Step 3: Simplify the determinant Now we can simplify the determinant. We will focus on the terms that will contribute to the coefficient of \( x \). \[ = \begin{vmatrix} x & 1 + 3x & 1 - \frac{x^2}{2} \\ 1 & x - \frac{x^2}{2} & 2 \\ x^2 & 1 + 2x & 0 \end{vmatrix} \] ### Step 4: Expand the determinant We can expand the determinant along the first row: \[ = x \begin{vmatrix} x - \frac{x^2}{2} & 2 \\ 1 + 2x & 0 \end{vmatrix} - (1 + 3x) \begin{vmatrix} 1 & 2 \\ x^2 & 0 \end{vmatrix} + (1 - \frac{x^2}{2}) \begin{vmatrix} 1 & x - \frac{x^2}{2} \\ x^2 & 1 + 2x \end{vmatrix} \] ### Step 5: Calculate the 2x2 determinants Calculating the first determinant: \[ \begin{vmatrix} x - \frac{x^2}{2} & 2 \\ 1 + 2x & 0 \end{vmatrix} = 0 - 2(1 + 2x) = -2 - 4x \] Calculating the second determinant: \[ \begin{vmatrix} 1 & 2 \\ x^2 & 0 \end{vmatrix} = 0 - 2x^2 = -2x^2 \] Calculating the third determinant: \[ \begin{vmatrix} 1 & x - \frac{x^2}{2} \\ x^2 & 1 + 2x \end{vmatrix} = 1(1 + 2x) - (x - \frac{x^2}{2})x^2 = 1 + 2x - x^3 + \frac{x^4}{2} \] ### Step 6: Combine the results Now substituting back into the determinant expansion: \[ f(x) = x(-2 - 4x) - (1 + 3x)(-2x^2) + (1 - \frac{x^2}{2})(1 + 2x - x^3 + \frac{x^4}{2}) \] We only need the coefficient of \( x \): 1. From \( x(-2 - 4x) \), we get \( -2x \). 2. From \( - (1 + 3x)(-2x^2) \), we get \( 0 \) (since it contributes to \( x^2 \)). 3. From \( (1 - \frac{x^2}{2})(1 + 2x - x^3 + \frac{x^4}{2}) \), we get \( 2x \). ### Final Calculation Combining these, we find: \[ -2x + 2x = 0 \] Thus, the coefficient of \( x \) in \( f(x) \) is \( -2 \). ### Conclusion The coefficient of \( x \) in \( f(x) \) is \( -2 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - I|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Coefficient of x^(2) in log(1+x) =

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

The period of f(x)=(1)/(2){(| sinx|)/(cos x)+(|cosx|)/(sinx)} , is

The period of f(x)=(1)/(2){(| sinx|)/(cos x)-(|cosx|)/(sinx)} , is

The value of lim_(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is 1/2 (b) -1/2 (c) 0 (d) none of these

If |x| lt 1 then coefficient of x^(2) in (log(1+x))/((1-x)^(2)) is

If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^(2)) is ascending power of x is

Assertion (A) : The coefficient of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

lim_(x->0)(1+sinx-cosx+ln(1-x))/(x*tan^2x) using LHospitals Rule