Home
Class 12
MATHS
The matrix A=[{:(1/sqrt2,1/sqrt2),((-1)/...

The matrix `A=[{:(1/sqrt2,1/sqrt2),((-1)/sqrt2,(-1)/sqrt2):}]` is

A

unitery

B

orthogonal

C

nilpotent`

D

involutary

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of the matrix \( A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \), we will check if it is an orthogonal matrix, involutory matrix, or nilpotent matrix. ### Step 1: Check if \( A \) is an Orthogonal Matrix An orthogonal matrix \( A \) satisfies the condition: \[ A A^T = I \] where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. #### Calculate \( A^T \): \[ A^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] #### Multiply \( A \) and \( A^T \): \[ A A^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] Calculating the entries: - First row, first column: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2} + \frac{1}{2} = 1 \] - First row, second column: \[ \frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} = -\frac{1}{2} - \frac{1}{2} = -1 \] - Second row, first column: \[ -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = -\frac{1}{2} - \frac{1}{2} = -1 \] - Second row, second column: \[ -\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} + -\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} = \frac{1}{2} + \frac{1}{2} = 1 \] Thus, \[ A A^T = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \neq I \] ### Conclusion for Orthogonal Matrix: Since \( A A^T \neq I \), \( A \) is not an orthogonal matrix. ### Step 2: Check if \( A \) is an Involutory Matrix An involutory matrix satisfies: \[ A^2 = I \] #### Calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] Calculating the entries: - First row, first column: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} = \frac{1}{2} - \frac{1}{2} = 0 \] - First row, second column: \[ \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} = \frac{1}{2} - \frac{1}{2} = 0 \] - Second row, first column: \[ -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + -\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} = -\frac{1}{2} + \frac{1}{2} = 0 \] - Second row, second column: \[ -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + -\frac{1}{\sqrt{2}} \cdot -\frac{1}{\sqrt{2}} = -\frac{1}{2} + \frac{1}{2} = 0 \] Thus, \[ A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq I \] ### Conclusion for Involutory Matrix: Since \( A^2 \neq I \), \( A \) is not an involutory matrix. ### Step 3: Check if \( A \) is a Nilpotent Matrix A nilpotent matrix satisfies: \[ A^m = 0 \quad \text{for some integer } m \] From the previous calculation, we found that: \[ A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Conclusion for Nilpotent Matrix: Since \( A^2 = 0 \), \( A \) is a nilpotent matrix. ### Final Answer: The matrix \( A \) is a nilpotent matrix.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - I|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

The matrix A={:[((1)/(sqrt(2)),(1)/(sqrt(2))),((-1)/(sqrt(2)),(-1)/(sqrt(2)))]:} is

log((sqrt2-1)/(sqrt2+1))

sqrt 2(sqrt 2+1) - sqrt 2 (1+sqrt2) =?

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Which term of the G.P.: sqrt(2),1/(sqrt(2)),1/(2sqrt(2)),1/(4sqrt(2)), i s1/(512sqrt(2))?

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

Number of point where function f(x) defined as f:[0,2pi] rarrR,f(x)={{:(3-|cosx-(1)/(sqrt2)|",",|sinx|lt(1)/(sqrt2)),(2+|cosx+(1)/(sqrt2)|",",|sinx|ge(1)/(sqrt2)):} is non differentiable is

Simplify: (1)/(sqrt(3+2sqrt(2)))+(1)/(sqrt(3+2sqrt(2)))

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.