Home
Class 12
MATHS
If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^...

If `|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0` then relation of `x,y` and `z` is

A

`ane1`

B

`a=1`

C

`a=0`

D

`a=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relation between \( x, y, \) and \( z \) given that the determinant \[ D = \begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} = 0. \] ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix}. \] ### Step 2: Expand the Determinant Using properties of determinants, we can separate the last column: \[ D = \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix} + \begin{vmatrix} x & x^2 & x^3 \\ y & y^2 & y^3 \\ z & z^2 & z^3 \end{vmatrix}. \] ### Step 3: Factor Out Common Terms We can factor out \( x, y, z \) from the respective rows: \[ D = xyz \begin{vmatrix} 1 & x & 1 \\ 1 & y & 1 \\ 1 & z & 1 \end{vmatrix} + \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix}. \] ### Step 4: Evaluate the Determinants The first determinant simplifies to: \[ \begin{vmatrix} 1 & x & 1 \\ 1 & y & 1 \\ 1 & z & 1 \end{vmatrix} = 0 \quad \text{(since rows are linearly dependent)}. \] The second determinant is a Vandermonde determinant: \[ \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (y-x)(z-x)(z-y). \] ### Step 5: Set the Determinant to Zero Thus, we have: \[ D = xyz \cdot 0 + (y-x)(z-x)(z-y) = 0. \] ### Step 6: Analyze the Factors The product \( (y-x)(z-x)(z-y) = 0 \) implies that at least one of the factors must be zero: 1. \( y - x = 0 \) → \( y = x \) 2. \( z - x = 0 \) → \( z = x \) 3. \( z - y = 0 \) → \( z = y \) ### Conclusion Thus, the relations between \( x, y, \) and \( z \) can be summarized as: - \( x = y \) - \( y = z \) - \( z = x \)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - I|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0, then xyz =

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a. 1 b. 2 c. -1 d. 2

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x, y, z are different and Delta=|[x, x^2, 1+x^3],[y, y^2, 1+y^3],[z, z^2, 1+z^3]|=0 then show that 1+xyz=0

If x!=y!=z and |x x^2 1+x^3 y y^2 1+y^3 z z^2 1+z^3|=0 , then prove that x y z=-1 .

For any scalar p prove that =|[x,x^2, 1+p x^3],[y, y^2, 1+p y^3],[z, z^2 ,1+p z^3]|=(1+p x y z)(x-y)(y-z)(z-x) .

If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3))|=(x-y)(y-z)(z-x){1/x+1/y+1/z} then k=

Using properties of determinants, prove the following: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]|=(1+pxyz)(x-y)(y-z)(z-x)

If x, y, z are different and Delta=|xx^2 1+x^3y y^2 1+y^3z z^2 1+z^3|=0 , then