Home
Class 12
MATHS
Vertices of a triangle are (0,0),(41alph...

Vertices of a triangle are `(0,0),(41alpha,37)and (-37,41beta),` where ` alpha and beta` are the roots of the equation `3x^(2)-16x+15=0.` The area of the triangle is `"_________."`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle with vertices at \( (0,0) \), \( (41\alpha, 37) \), and \( (-37, 41\beta) \), where \( \alpha \) and \( \beta \) are the roots of the equation \( 3x^2 - 16x + 15 = 0 \), we will follow these steps: ### Step 1: Find the roots \( \alpha \) and \( \beta \) The roots of the quadratic equation \( 3x^2 - 16x + 15 = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = -16 \), and \( c = 15 \). Calculating the discriminant: \[ b^2 - 4ac = (-16)^2 - 4 \cdot 3 \cdot 15 = 256 - 180 = 76 \] Now substituting back into the formula: \[ x = \frac{16 \pm \sqrt{76}}{6} \] Simplifying \( \sqrt{76} = 2\sqrt{19} \): \[ x = \frac{16 \pm 2\sqrt{19}}{6} = \frac{8 \pm \sqrt{19}}{3} \] Thus, the roots are: \[ \alpha = \frac{8 - \sqrt{19}}{3}, \quad \beta = \frac{8 + \sqrt{19}}{3} \] ### Step 2: Determine the coordinates of the triangle vertices The vertices of the triangle are: - \( A(0, 0) \) - \( B(41\alpha, 37) = \left( 41 \cdot \frac{8 - \sqrt{19}}{3}, 37 \right) = \left( \frac{328 - 41\sqrt{19}}{3}, 37 \right) \) - \( C(-37, 41\beta) = \left( -37, 41 \cdot \frac{8 + \sqrt{19}}{3} \right) = \left( -37, \frac{328 + 41\sqrt{19}}{3} \right) \) ### Step 3: Calculate the area of the triangle The area \( A \) of a triangle given vertices \( (x_1, y_1) \), \( (x_2, y_2) \), and \( (x_3, y_3) \) can be calculated using the formula: \[ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the coordinates: \[ A = \frac{1}{2} \left| 0(37 - \frac{328 + 41\sqrt{19}}{3}) + \frac{328 - 41\sqrt{19}}{3} \left( \frac{328 + 41\sqrt{19}}{3} - 0 \right) + (-37)(0 - 37) \right| \] This simplifies to: \[ A = \frac{1}{2} \left| \frac{328 - 41\sqrt{19}}{3} \cdot \frac{328 + 41\sqrt{19}}{3} + 37^2 \right| \] Calculating \( \frac{328 - 41\sqrt{19}}{3} \cdot \frac{328 + 41\sqrt{19}}{3} \): This is a difference of squares: \[ = \frac{(328)^2 - (41\sqrt{19})^2}{9} = \frac{107584 - 1681 \cdot 41}{9} = \frac{107584 - 68921}{9} = \frac{38663}{9} \] Now substituting back into the area formula: \[ A = \frac{1}{2} \left| \frac{38663}{9} + 1369 \right| = \frac{1}{2} \left| \frac{38663 + 12321}{9} \right| = \frac{1}{2} \left| \frac{50984}{9} \right| = \frac{50984}{18} \] Calculating this gives: \[ A \approx 2821.33 \] ### Final Answer The area of the triangle is approximately \( 2821.33 \). ---
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-H (MULTIPLE TRUE-FALSE TYPE QUESTIONS)|2 Videos
  • STATISTICS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C Assertion-Reason|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the root of the equation x^(2) - 4x + 5 = 0 , then alpha^(2) + beta^(2) = ________

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to

Find the equation whose roots are (alpha)/(beta) and (beta)/(alpha) , where alpha and beta are the roots of the equation x^(2)+2x+3=0 .

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are the roots of the equation x^(2)-px +16=0 , such that alpha^(2)+beta^(2)=9 , then the value of p is

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

Let alpha and beta be two roots of the equation x^(2) + 2x + 2 = 0 . Then alpha^(15) + beta^(15) is equal to