Home
Class 12
MATHS
The co-ordinates of a point A(n) is (n,n...

The co-ordinates of a point `A_(n)` is `(n,n,sqrtn)` where `n in NN`, If `O(0,0,0)` is the origin then `sum_(i=1)^(12) (OA_(i))^(2)` equals `"_________".`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the sum \( \sum_{i=1}^{12} (OA_i)^2 \) where the coordinates of point \( A_n \) are given as \( (n, n, \sqrt{n}) \) and \( O \) is the origin \( (0, 0, 0) \). ### Step-by-Step Solution: 1. **Identify the Coordinates**: The coordinates of point \( A_n \) are \( (n, n, \sqrt{n}) \). 2. **Calculate the Distance \( OA_n \)**: The distance \( OA_n \) from the origin \( O(0, 0, 0) \) to the point \( A_n(n, n, \sqrt{n}) \) can be calculated using the distance formula: \[ OA_n = \sqrt{(n - 0)^2 + (n - 0)^2 + (\sqrt{n} - 0)^2} \] Simplifying this gives: \[ OA_n = \sqrt{n^2 + n^2 + (\sqrt{n})^2} = \sqrt{n^2 + n^2 + n} = \sqrt{2n^2 + n} \] 3. **Square the Distance**: We need \( (OA_n)^2 \): \[ (OA_n)^2 = 2n^2 + n \] 4. **Set Up the Summation**: We need to find the sum: \[ \sum_{i=1}^{12} (OA_i)^2 = \sum_{i=1}^{12} (2i^2 + i) \] This can be separated into two sums: \[ = \sum_{i=1}^{12} 2i^2 + \sum_{i=1}^{12} i \] 5. **Calculate the First Sum**: The formula for the sum of the first \( n \) squares is: \[ \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \] For \( n = 12 \): \[ \sum_{i=1}^{12} i^2 = \frac{12 \cdot 13 \cdot 25}{6} = 650 \] Therefore: \[ \sum_{i=1}^{12} 2i^2 = 2 \cdot 650 = 1300 \] 6. **Calculate the Second Sum**: The formula for the sum of the first \( n \) natural numbers is: \[ \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \] For \( n = 12 \): \[ \sum_{i=1}^{12} i = \frac{12 \cdot 13}{2} = 78 \] 7. **Combine the Results**: Now combine both sums: \[ \sum_{i=1}^{12} (OA_i)^2 = 1300 + 78 = 1378 \] ### Final Answer: Thus, the value of \( \sum_{i=1}^{12} (OA_i)^2 \) is \( 1378 \).
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-H (MULTIPLE TRUE-FALSE TYPE QUESTIONS)|2 Videos
  • STATISTICS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C Assertion-Reason|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos

Similar Questions

Explore conceptually related problems

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

If agt0 , then sum_(n=1)^(oo) ((a)/(a+1))^(n) equals

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

If n in NN , then find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) .

If A=[{:(1,a),(0,1):}] then A^(n) (where n in N ) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

If f(n) = [(1)/(3)+(n)/(100)] , where [.] denotes G.I.F then sum_(n=1)^(200)f(n) is equal to