Home
Class 12
MATHS
The centre and radius of the circle (x+ ...

The centre and radius of the circle `(x+ 2)^(2) + (y+4)^(2) = 9` are

A

(2, 4) and 3

B

`(-2, -4) and 3`

C

`(-2, -4)` and 9

D

`(2, -4)` and 3

Text Solution

AI Generated Solution

The correct Answer is:
To find the center and radius of the circle given by the equation \((x + 2)^2 + (y + 4)^2 = 9\), we can follow these steps: ### Step 1: Identify the standard form of the circle's equation The standard form of a circle's equation is given by: \[ (x - a)^2 + (y - b)^2 = r^2 \] where \((a, b)\) is the center of the circle and \(r\) is the radius. ### Step 2: Rewrite the given equation The given equation is: \[ (x + 2)^2 + (y + 4)^2 = 9 \] We can rewrite this in a form that resembles the standard form: \[ (x - (-2))^2 + (y - (-4))^2 = 3^2 \] ### Step 3: Compare the equations Now, we can compare this rewritten equation with the standard form: - From \((x - (-2))^2\), we see that \(a = -2\). - From \((y - (-4))^2\), we see that \(b = -4\). - The right side \(3^2\) indicates that \(r = 3\). ### Step 4: State the center and radius Thus, we can conclude: - The center of the circle is \((-2, -4)\). - The radius of the circle is \(3\). ### Final Answer - Center: \((-2, -4)\) - Radius: \(3\) ---
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-B|121 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-C ( Objective Type Questions ( More than one answer))|1 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try ypurself|42 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

Find the centre and radius of the circle (x-2)^(2)+(y+5)^(2)=49

Find the centre and radius of the circle (x+2)^(2)+(y+3)^(2)=5

Find the centre and radius of the circle (x+1)^2+(y−1)^2=4

Find the centre and radius of the circle 2x^(2) + 2y^(2) - x = 0

Find the centre and radius of the circles (x+5)^2+(y-3)^2=36

Find the centre and radius of the circle x^(2) + y^(2) + 6x -10y -2 =0

Find the centre and radius of the circle 4x^(2) + 4y^(2) + 16y -4x = 19.

Find the centre and radius of the circle 3x^(2)+ 3y^(2) - 6x + 4y - 4 = 0

The centre and radius of the circle x^(2) + y^(2) + 6x + 8y - 11 = 0 is ………….

Find the centre and radius of the circle 3x^(2) +3y^(2) - 6x +9y - 8 =0 .

AAKASH INSTITUTE ENGLISH-CONIC SECTIONS-Assignment (SECTION - A)
  1. The equation of the circle with centre at (1, 3) and radius 3 is

    Text Solution

    |

  2. The centre and radius of the circle (x+ 2)^(2) + (y+4)^(2) = 9 are

    Text Solution

    |

  3. The radius of the circle x^(2) + y^(2) + 4x - 6y + 12 = 0 is

    Text Solution

    |

  4. If the perpendicular distance of the line lx+my =1 from the point (0, ...

    Text Solution

    |

  5. The equation of a circle of radius 4 units, touching the x-axis at (5,...

    Text Solution

    |

  6. The equation of the circle in the third quadrant touching each co-ordi...

    Text Solution

    |

  7. The equation of the circle with radius 3 units, passing through the po...

    Text Solution

    |

  8. The equation of the circle with radius sqrt(5) units whose centre lie...

    Text Solution

    |

  9. The equation of the circle passing through (0, 0) and making intercept...

    Text Solution

    |

  10. If 'P' is any point on the circumference of the circle x^(2) + y^(2) -...

    Text Solution

    |

  11. The equation of the circle having centre (0, 0) and passing through th...

    Text Solution

    |

  12. The equation of the circle which passes through the point (3, 4) and h...

    Text Solution

    |

  13. If the lines 3x + y = 11 and x - y = 1 are the diameters of a circle ...

    Text Solution

    |

  14. The point (2, 4) lies inside the circle x^(2) + y^(2) = 16. The above ...

    Text Solution

    |

  15. The equation of the parabola with focus (3, 0) and directrix y = -3 is

    Text Solution

    |

  16. The equation of the parabola with vertex at (0, 0) and focus at (0, 4)...

    Text Solution

    |

  17. The equation of the directrix of the parabola x^(2) = 8y is

    Text Solution

    |

  18. The co-ordinate of the focus of the parabola y^(2) = 24x is

    Text Solution

    |

  19. If x^(2) = 20y represents a parabola, then the distance of the focus f...

    Text Solution

    |

  20. The length of the latus rectum of the parabola x^(2) = -28y is

    Text Solution

    |