Home
Class 12
MATHS
If the line y = mx + sqrt(a^(2) m^(2) -b...

If the line `y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2)` touches the hyperbola `(x^(2))/(16)-(y^(2))/(3) =1` at the point `(4 sec theta, sqrt(3) tan theta)` then `theta` is

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`(2pi)/(3)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( \theta \) given that the line \( y = mx + \sqrt{a^2 m^2 - b^2} \) touches the hyperbola \( \frac{x^2}{16} - \frac{y^2}{3} = 1 \) at the point \( (4 \sec \theta, \sqrt{3} \tan \theta) \) with \( m = \frac{1}{2} \). ### Step 1: Find the derivative of the hyperbola The equation of the hyperbola is given by: \[ \frac{x^2}{16} - \frac{y^2}{3} = 1 \] To find the slope of the tangent line at any point on the hyperbola, we differentiate implicitly: \[ \frac{d}{dx}\left(\frac{x^2}{16}\right) - \frac{d}{dx}\left(\frac{y^2}{3}\right) = 0 \] This gives: \[ \frac{2x}{16} - \frac{2y}{3} \frac{dy}{dx} = 0 \] Rearranging, we find: \[ \frac{2y}{3} \frac{dy}{dx} = \frac{2x}{16} \] Thus, \[ \frac{dy}{dx} = \frac{3x}{16y} \] ### Step 2: Substitute the point into the derivative We substitute the point \( (4 \sec \theta, \sqrt{3} \tan \theta) \) into the derivative: \[ \frac{dy}{dx} = \frac{3(4 \sec \theta)}{16(\sqrt{3} \tan \theta)} = \frac{12 \sec \theta}{16 \sqrt{3} \tan \theta} = \frac{3 \sec \theta}{4 \sqrt{3} \tan \theta} \] ### Step 3: Set the slope equal to \( m \) Since the line touches the hyperbola, the slope of the tangent line must equal \( m \): \[ \frac{3 \sec \theta}{4 \sqrt{3} \tan \theta} = \frac{1}{2} \] ### Step 4: Cross-multiply and simplify Cross-multiplying gives: \[ 3 \sec \theta = 2 \cdot 4 \sqrt{3} \tan \theta \] This simplifies to: \[ 3 \sec \theta = 8 \sqrt{3} \tan \theta \] ### Step 5: Substitute \( \sec \theta \) and \( \tan \theta \) Recall that: \[ \sec \theta = \frac{1}{\cos \theta} \quad \text{and} \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] Substituting these into the equation gives: \[ 3 \cdot \frac{1}{\cos \theta} = 8 \sqrt{3} \cdot \frac{\sin \theta}{\cos \theta} \] Cancelling \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)): \[ 3 = 8 \sqrt{3} \sin \theta \] ### Step 6: Solve for \( \sin \theta \) Rearranging gives: \[ \sin \theta = \frac{3}{8 \sqrt{3}} = \frac{3 \sqrt{3}}{24} = \frac{\sqrt{3}}{8} \] ### Step 7: Find \( \theta \) To find \( \theta \), we recognize that \( \sin \theta = \frac{\sqrt{3}}{2} \) corresponds to angles of \( 60^\circ \) or \( 120^\circ \) (in the first and second quadrants, respectively). Thus, the possible values for \( \theta \) are: \[ \theta = 60^\circ \quad \text{or} \quad \theta = 120^\circ \] ### Final Answer The value of \( \theta \) is \( 60^\circ \) or \( 120^\circ \).
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-C ( Objective Type Questions ( More than one answer))|1 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-C|44 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - A)|55 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

If the line y=mx + sqrt(a^2 m^2 - b^2) touches the hyperbola x^2/a^2 - y^2/b^2 = 1 at the point (a sec phi, b tan phi) , show that phi = sin^(-1) (b/am) .

Solve sec theta-1=(sqrt(2)-1) tan theta .

Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .

If the line y = mx + 7 sqrt(3) is normal to the hyperbola (x^(2))/(24)-(y^(2))/(18)=1 , then a value of m is :

If the line y=x+sqrt(3) touches the ellipse (x^(2))/(4)+(y^(2))/(1)=1 then the point of contact is

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

Solve: sec2theta=2/sqrt(3)

Solve sqrt(2) sec theta+tan theta=1 .

Solve sqrt(3) sec 2 theta=2 .

Prove that 1 + tan 2 theta tan theta = sec 2 theta .

AAKASH INSTITUTE ENGLISH-CONIC SECTIONS-SECTION-B
  1. P is any variable point on the ellipse 4x^(2) + 9y^(2) = 36 and F(1), ...

    Text Solution

    |

  2. The curve described parametrically by x=t^2+t+1 , and y=t^2-t+1 repres...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. AB is double ordinate of the hyperbola x^2/a^2-y^2/b^2=1 such that Del...

    Text Solution

    |

  5. Find the equation to the hyperbola whose foci, are (6,4) and (-4,4) a...

    Text Solution

    |

  6. The equation of the tangent to the hyperbola 3x^(2) - 4y^(2) = 12, whi...

    Text Solution

    |

  7. The equation (x^2)/(1-r)-(y^2)/(1+r)=1,r >1, represents an ellipse (b)...

    Text Solution

    |

  8. The equation of the hyperbola with centre at (0, 0) and co-ordinate ...

    Text Solution

    |

  9. The equation of the tangent to the hyperbola 3x^(2) - 8y^(2) = 24 and ...

    Text Solution

    |

  10. Find the locus of a point P(alpha, beta) moving under the condition th...

    Text Solution

    |

  11. The locus of the middle points of the chords of hyperbola (x^(2))/(9) ...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. IF t is a parameter, then x = a(t + (1)/(t)) and y = b(t - (1)/(t)) re...

    Text Solution

    |

  15. If 3x^(2) - 5y^(2) - 6x + 20 y - 32 = 0 represents a hyperbola, then ...

    Text Solution

    |

  16. IF the locus of the point of intersection of two perpendicular tangent...

    Text Solution

    |

  17. If the line y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2) touches the...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. Area of the triangle formed by any arbitrary tangents of the hyperbola...

    Text Solution

    |

  20. If the normal to the rectangular hyperbola xy = 4 at the point (2t, ...

    Text Solution

    |