Home
Class 12
MATHS
If any two chords be drawn through two p...

If any two chords be drawn through two points on major axis of an ellipse equidistant from centre, then `tan((alpha)/(2))tan((beta)/(2))tan((gamma)/(2))tan((delta)/(2))` = _____,
( where `alpha, beta, gamma, delta` are ecentric angles of extremities of chords )

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right) \tan\left(\frac{\gamma}{2}\right) \tan\left(\frac{\delta}{2}\right) \), where \( \alpha, \beta, \gamma, \delta \) are the eccentric angles of the extremities of two chords drawn through two points on the major axis of an ellipse that are equidistant from the center. ### Step-by-Step Solution: 1. **Identify Points on the Major Axis**: Let the two points on the major axis of the ellipse be \( (d, 0) \) and \( (-d, 0) \), where \( d \) is the distance from the center of the ellipse. 2. **Equation of the Chords**: The equation of the chord of the ellipse corresponding to the angles \( \alpha \) and \( \beta \) can be expressed as: \[ \frac{x}{a} \cos\left(\frac{\alpha + \beta}{2}\right) + \frac{y}{b} \sin\left(\frac{\alpha + \beta}{2}\right) = \cos\left(\frac{\alpha - \beta}{2}\right) \] This is Equation (1). Similarly, for the angles \( \gamma \) and \( \delta \): \[ \frac{x}{a} \cos\left(\frac{\gamma + \delta}{2}\right) + \frac{y}{b} \sin\left(\frac{\gamma + \delta}{2}\right) = \cos\left(\frac{\gamma - \delta}{2}\right) \] This is Equation (2). 3. **Substituting Points into the Equations**: Substitute the point \( (d, 0) \) into Equation (1): \[ \frac{d}{a} \cos\left(\frac{\alpha + \beta}{2}\right) = \cos\left(\frac{\alpha - \beta}{2}\right) \] Rearranging gives: \[ \frac{d}{a} = \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)} \] Now substitute the point \( (-d, 0) \) into Equation (2): \[ \frac{-d}{a} \cos\left(\frac{\gamma + \delta}{2}\right) = \cos\left(\frac{\gamma - \delta}{2}\right) \] Rearranging gives: \[ \frac{d}{a} = -\frac{\cos\left(\frac{\gamma - \delta}{2}\right)}{\cos\left(\frac{\gamma + \delta}{2}\right)} \] 4. **Equating the Two Expressions**: Since both expressions equal \( \frac{d}{a} \), we can set them equal to each other: \[ \frac{\cos\left(\frac{\alpha - \beta}{2}\right)}{\cos\left(\frac{\alpha + \beta}{2}\right)} = -\frac{\cos\left(\frac{\gamma - \delta}{2}\right)}{\cos\left(\frac{\gamma + \delta}{2}\right)} \] 5. **Reciprocal and Simplification**: Taking the reciprocal of both sides gives: \[ \frac{\cos\left(\frac{\alpha + \beta}{2}\right)}{\cos\left(\frac{\alpha - \beta}{2}\right)} = -\frac{\cos\left(\frac{\gamma + \delta}{2}\right)}{\cos\left(\frac{\gamma - \delta}{2}\right)} \] 6. **Using Trigonometric Identities**: Using the cosine addition and subtraction formulas, we can express the cosines in terms of sines and cosines of half angles. After simplification, we find that: \[ \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right) \tan\left(\frac{\gamma}{2}\right) \tan\left(\frac{\delta}{2}\right) = 1 \] ### Final Answer: Thus, the value of \( \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right) \tan\left(\frac{\gamma}{2}\right) \tan\left(\frac{\delta}{2}\right) \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - H ( Multiple True-False Type Questions )|5 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION -I ( Subjective Type Questions )|24 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION -F ( Matrix-Match Type Questions )|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

If any two chords be drawn through two points on the major axis of the ellipse x^2/a^2+y^2/b^2=1 equidistant from the centre. If α,β,γ,δ are the eccentric angles of the extremities of the chords, then the value of tan(α/2)tan(β/2)tan(γ/2)tan(δ/2) , is

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then Triangle is

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of tan (theta/2)=(tan (alpha/2)-tan (beta/2))/(1-tan (alpha/2) tan (beta/2)).

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If the chord, joining two points whose eccentric angles are alpha and beta , cuts the major axis ofthe ellipse x^2/a^2 + y^2/b^2=1 at a distance c from the centre, then tan alpha//2.tan beta//2 is equal to

If cos theta=cos alpha cos beta then tan((theta+alpha)/2) tan((theta-alpha)/2)= (i) tan^2(alpha/2) (ii) tan^2(beta/2) (iii) tan^2(theta/2) (iv) cot^2(beta/2)

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =