Home
Class 12
MATHS
'underset(x to 0) (sqrt(a +x) - sqrt(a))...

'underset(x to 0) (sqrt(a +x) - sqrt(a))/(x sqrt(a^(2) + ax))` is equal to

A

`2 sqrt(a)`

B

`sqrt(a)`

C

`(1)/(2sqrt(a))`

D

`(1)/(2a^(3//2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \(\lim_{x \to 0} \frac{\sqrt{a+x} - \sqrt{a}}{x \sqrt{a^2 + ax}}\), we will follow these steps: ### Step 1: Write the limit expression We start with the limit expression: \[ \lim_{x \to 0} \frac{\sqrt{a+x} - \sqrt{a}}{x \sqrt{a^2 + ax}} \] ### Step 2: Rationalize the numerator To simplify the expression, we will rationalize the numerator. We multiply and divide by the conjugate of the numerator: \[ \frac{\sqrt{a+x} - \sqrt{a}}{x \sqrt{a^2 + ax}} \cdot \frac{\sqrt{a+x} + \sqrt{a}}{\sqrt{a+x} + \sqrt{a}} \] This gives us: \[ \lim_{x \to 0} \frac{(\sqrt{a+x} - \sqrt{a})(\sqrt{a+x} + \sqrt{a})}{x \sqrt{a^2 + ax} (\sqrt{a+x} + \sqrt{a})} \] The numerator simplifies to: \[ (\sqrt{a+x})^2 - (\sqrt{a})^2 = (a+x) - a = x \] Thus, the expression becomes: \[ \lim_{x \to 0} \frac{x}{x \sqrt{a^2 + ax} (\sqrt{a+x} + \sqrt{a})} \] ### Step 3: Cancel \(x\) in the numerator and denominator Now we can cancel \(x\) from the numerator and denominator (for \(x \neq 0\)): \[ \lim_{x \to 0} \frac{1}{\sqrt{a^2 + ax} (\sqrt{a+x} + \sqrt{a})} \] ### Step 4: Substitute \(x = 0\) Now we substitute \(x = 0\) into the remaining expression: \[ \sqrt{a^2 + a \cdot 0} = \sqrt{a^2} = a \] And, \[ \sqrt{0 + a} + \sqrt{a} = \sqrt{a} + \sqrt{a} = 2\sqrt{a} \] Thus, we have: \[ \lim_{x \to 0} \frac{1}{a \cdot 2\sqrt{a}} = \frac{1}{2a^{3/2}} \] ### Final Answer The limit is: \[ \frac{1}{2a^{3/2}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sqrt(a+x)-sqrt(a-x))/( x)

lim _(x -> 0) (sqrt(a+x) - sqrt(a-x))/(x)

underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

underset(x to sqrt(2))(It) (x^(2) - 2)/(x^(2) + sqrt(2)x - 4) is equal to

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

int(cos sqrt(x))/( sqrt(x)) dx is equal to

lim_(x to 0) (sqrt(1 + 3x) + sqrt(1 - 3x))/(1 + 3x) is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

lim _(x -> 0) (sqrt(3-x) - sqrt(3+x))/(x)

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -SECTION - A
  1. lim(x to 0) (sin^(2) x//4)/(x) is equal to

    Text Solution

    |

  2. lim(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

    Text Solution

    |

  3. 'underset(x to 0) (sqrt(a +x) - sqrt(a))/(x sqrt(a^(2) + ax)) is equal...

    Text Solution

    |

  4. Evaluate underset(x to 3)(lim) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^...

    Text Solution

    |

  5. If f (x) = x^(4) + 2x^(3), them lim(x to 2) (f(x) - f(2))/(x - 2) is ...

    Text Solution

    |

  6. underset(x to sqrt(2))(It) (x^(2) - 2)/(x^(2) + sqrt(2)x - 4) is equal...

    Text Solution

    |

  7. lim(x to 27) (x^(1//3) + 3) (X^(1//3) - 3))/(x - 27) is equal to

    Text Solution

    |

  8. lim(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

    Text Solution

    |

  9. lim(x to 4) (x^(2) - 16)/(sqrt(x) - 2) is equal to

    Text Solution

    |

  10. Evaluate the following limits : Lim(x to 2) (x-2)/(sqrt(x)-sqrt(2))

    Text Solution

    |

  11. lim(x to 0) (x)/(tan x) is equal to

    Text Solution

    |

  12. The derivative of f(x) = x^(2) at x = 1 is

    Text Solution

    |

  13. The derivative of f (x) = x^(2) + 2x at x = 2 is

    Text Solution

    |

  14. The derivative of f(x) = "sin" 2x is

    Text Solution

    |

  15. The derivative of f(x) = (sqrt(x) + (1)/(sqrt(x)))^(2) is

    Text Solution

    |

  16. If Y = (1 + tan x)/(1 - tan x), then (dy)/(dx) is

    Text Solution

    |

  17. The derivative of f(x) = x^(-3) (3 + 7.x) is

    Text Solution

    |

  18. The derivative of f(x) = (3 x + 2 "sin" x)/(x + 5 cos x) is

    Text Solution

    |

  19. The derivative of f(x) = (x + (1)/(x))^(3)

    Text Solution

    |

  20. Compute the derivative of f(x)=sin^2x.

    Text Solution

    |