Home
Class 12
MATHS
lim(x to 2) (x^(3) + x^(2) + 4x + 12)/(...

`lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2)` is equal to

A

8

B

`(3)/(4)`

C

`(3)/(5)`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2} \), we will follow these steps: ### Step 1: Substitute the limit value We will substitute \( x = 2 \) directly into the function. \[ L = \frac{2^3 + 2^2 + 4 \cdot 2 + 12}{2^3 - 3 \cdot 2 + 2} \] ### Step 2: Calculate the numerator Now, we calculate the numerator: \[ 2^3 = 8, \quad 2^2 = 4, \quad 4 \cdot 2 = 8 \] So, the numerator becomes: \[ 8 + 4 + 8 + 12 = 32 \] ### Step 3: Calculate the denominator Next, we calculate the denominator: \[ 2^3 = 8, \quad 3 \cdot 2 = 6 \] So, the denominator becomes: \[ 8 - 6 + 2 = 4 \] ### Step 4: Formulate the limit Now we can substitute the calculated numerator and denominator back into the limit: \[ L = \frac{32}{4} \] ### Step 5: Simplify the limit Finally, we simplify the fraction: \[ L = 8 \] Thus, the limit is: \[ \boxed{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

lim_(x to 2) (x^(2) - 4)/(x + 3) is equal to

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

lim _( x to 0) ((2 ^(x) + 3 ^(x) + 6 ^(x))/(3))^(3//x) [is equal to "_____."

lim_(x to 3)(x^(3)+x^(2)-12x)/(x^(2)-9)=

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

lim _ ( x to 2 ) ( 3 ^(x) + 3 ^( 3 - x ) - 12 ) /( 3 ^( - x//2) - 3 ^( 1 -x)) is equal to __________

Evaluate lim_(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

lim_(xrarroo) (x^(3)+3x^(2)+6x+5)/(x^(3)+x+2)

lim_(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "