Home
Class 12
MATHS
If Y = (1 + tan x)/(1 - tan x), then (dy...

If `Y = (1 + tan x)/(1 - tan x)`, then `(dy)/(dx)` is

A

`(2 sec^(2)x)/((1- tan x)^(2))`

B

`(2 sec^(2) x)/(1 + tan x)`

C

`("sin"^(2) x)/(1 + tan x)`

D

`(sec^(2) x)/(1 + tan x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( Y = \frac{1 + \tan x}{1 - \tan x} \), we will use the quotient rule for differentiation. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{u'v - uv'}{v^2} \] where \( u \) is the numerator and \( v \) is the denominator. ### Step 1: Identify \( u \) and \( v \) Let: - \( u = 1 + \tan x \) - \( v = 1 - \tan x \) ### Step 2: Find \( u' \) and \( v' \) Now, we need to differentiate \( u \) and \( v \): - The derivative of \( u \): \[ u' = \frac{d}{dx}(1 + \tan x) = 0 + \sec^2 x = \sec^2 x \] - The derivative of \( v \): \[ v' = \frac{d}{dx}(1 - \tan x) = 0 - \sec^2 x = -\sec^2 x \] ### Step 3: Apply the quotient rule Now, substitute \( u \), \( v \), \( u' \), and \( v' \) into the quotient rule formula: \[ \frac{dy}{dx} = \frac{(\sec^2 x)(1 - \tan x) - (1 + \tan x)(-\sec^2 x)}{(1 - \tan x)^2} \] ### Step 4: Simplify the expression Now, simplify the numerator: \[ \frac{dy}{dx} = \frac{\sec^2 x (1 - \tan x) + \sec^2 x (1 + \tan x)}{(1 - \tan x)^2} \] Combine the terms in the numerator: \[ = \frac{\sec^2 x (1 - \tan x + 1 + \tan x)}{(1 - \tan x)^2} = \frac{\sec^2 x (2)}{(1 - \tan x)^2} \] Thus, we have: \[ \frac{dy}{dx} = \frac{2 \sec^2 x}{(1 - \tan x)^2} \] ### Final Answer The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{2 \sec^2 x}{(1 - \tan x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If y = ( tan x)/( 1+ tan^2 x), Prove that (dy)/(dx) = cos 2x.

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If tan(x+y)=e^(x+y) , then (dy)/(dx)

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

If tan(x+y)+tan(x-y)=1 , find (dy)/(dx) .

If x = e^(tan^(-1))((y-x^2)/x^2) then (dy)/(dx)=

If y=e^((tan^(-1)x) then find (dy)/(dx)

If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))