Home
Class 12
MATHS
lim(x to 0) (x tan 3 x)/("sin"^(2) x) i...

`lim_(x to 0) (x tan 3 x)/("sin"^(2) x)` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{x \tan(3x)}{\sin^2(x)} \), we can follow these steps: ### Step 1: Rewrite the limit expression We start with the limit expression: \[ \lim_{x \to 0} \frac{x \tan(3x)}{\sin^2(x)} \] ### Step 2: Manipulate the expression We can rewrite the expression by multiplying and dividing by \( x^2 \): \[ \lim_{x \to 0} \frac{x \tan(3x)}{\sin^2(x)} = \lim_{x \to 0} \frac{x \tan(3x)}{x^2} \cdot \frac{x^2}{\sin^2(x)} \] ### Step 3: Split the limit Now we can split the limit into two parts: \[ = \lim_{x \to 0} \frac{\tan(3x)}{x} \cdot \lim_{x \to 0} \frac{x^2}{\sin^2(x)} \] ### Step 4: Evaluate the first limit Using the limit property \( \lim_{x \to 0} \frac{\tan(kx)}{kx} = 1 \), we can evaluate the first limit: \[ \lim_{x \to 0} \frac{\tan(3x)}{x} = 3 \quad \text{(because we multiply by 3)} \] ### Step 5: Evaluate the second limit For the second limit, we use the property \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \): \[ \lim_{x \to 0} \frac{x^2}{\sin^2(x)} = \left( \lim_{x \to 0} \frac{x}{\sin(x)} \right)^2 = 1^2 = 1 \] ### Step 6: Combine the results Now we can combine the results from both limits: \[ \lim_{x \to 0} \frac{x \tan(3x)}{\sin^2(x)} = 3 \cdot 1 = 3 \] ### Final Answer Thus, the limit is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0) (tan 3x- 2x)/(3x-sin^(2) x)

lim_(x to 0) (2x)/(tan3x)=?

Evaluate the following limits : Lim _(x to 0) (tan 3x - 2x)/(3x - sin^(2)x)

Evaluate the following limits : lim_(x to 0) (sin 3x)/(sin 2x)

Evaluate the following limits : Lim_(x to 0) (sin 3x cos 2x)/(sin 2x)

Evaluate lim_(x-> 0) (tan3x-2x)/(3x- sin^2 x)

lim_(xrarr0) (sin 3 x)/(2x)

Statement -1 : lim_( x to 0) (sin x)/x exists ,. Statement -2 : |x| is differentiable at x=0 Statement -3 : If lim_(x to 0) (tan kx)/(sin 5x) = 3 , then k = 15

lim_(x to 0) (sin x + cos 3x)^(2//x) =

Evaluate the following limits : lim_(x to 0) (sin 2x + sin 6x)/(sin 5x - sin 3x)