Home
Class 12
MATHS
If Y = ((2 - 3 cos x)/("sin" x)), then (...

If `Y = ((2 - 3 cos x)/("sin" x))`, then `(dy)/(dx)` at `x = (pi)/(4)` is

A

`2 (3 - sqrt(2)`)

B

`2 - 3 sqrt(2)`

C

`3 sqrt(2) + 1`

D

`6 - sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( Y = \frac{2 - 3 \cos x}{\sin x} \) at \( x = \frac{\pi}{4} \), we will use the quotient rule. The quotient rule states that if you have a function \( \frac{u}{v} \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Where: - \( u = 2 - 3 \cos x \) - \( v = \sin x \) ### Step 1: Differentiate \( u \) and \( v \) First, we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. **Differentiate \( u \)**: \[ u = 2 - 3 \cos x \implies \frac{du}{dx} = 0 + 3 \sin x = 3 \sin x \] 2. **Differentiate \( v \)**: \[ v = \sin x \implies \frac{dv}{dx} = \cos x \] ### Step 2: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{\sin x \cdot (3 \sin x) - (2 - 3 \cos x) \cdot \cos x}{\sin^2 x} \] ### Step 3: Simplify the Expression Now we simplify the numerator: \[ \frac{dy}{dx} = \frac{3 \sin^2 x - (2 \cos x - 3 \cos^2 x)}{\sin^2 x} \] This can be rewritten as: \[ \frac{dy}{dx} = \frac{3 \sin^2 x - 2 \cos x + 3 \cos^2 x}{\sin^2 x} \] ### Step 4: Substitute \( x = \frac{\pi}{4} \) Now we need to evaluate \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \): 1. Calculate \( \sin \frac{\pi}{4} \) and \( \cos \frac{\pi}{4} \): \[ \sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \] 2. Substitute these values into the derivative: \[ \frac{dy}{dx} = \frac{3 \left(\frac{1}{\sqrt{2}}\right)^2 - 2 \left(\frac{1}{\sqrt{2}}\right) + 3 \left(\frac{1}{\sqrt{2}}\right)^2}{\left(\frac{1}{\sqrt{2}}\right)^2} \] This simplifies to: \[ = \frac{3 \cdot \frac{1}{2} - 2 \cdot \frac{1}{\sqrt{2}} + 3 \cdot \frac{1}{2}}{\frac{1}{2}} = \frac{\frac{3}{2} - \frac{2}{\sqrt{2}} + \frac{3}{2}}{\frac{1}{2}} \] Combine the terms in the numerator: \[ = \frac{3 - \frac{2\sqrt{2}}{2}}{\frac{1}{2}} = \frac{3 - \sqrt{2}}{\frac{1}{2}} = 2(3 - \sqrt{2}) = 6 - 2\sqrt{2} \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \) is: \[ \frac{dy}{dx} = 6 - 2\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y=cos x cos 2x cos 4x cos 8x , then (dy)/(dx)" at "x=(pi)/(2) is

If y =2 sin x+cot x , then find (dy)/(dx) at x=(pi)/(4) .

If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If y = (cos x - sin x)/( cos x + sin x ) , "then " (dy)/(dx)

If (cos"x")^y=(sin y)^x , find (dy)/(dx)

If y=cos ^(-1)sin x , then dy/dx