Home
Class 12
MATHS
If y = x^(4) + 2 x^(2) + 3x + 1, then (d...

If `y = x^(4) + 2 x^(2) + 3x + 1`, then `(dy)/(dx)` at x = 1 is

A

10

B

11

C

12

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = 1\) for the function \(y = x^4 + 2x^2 + 3x + 1\), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = x^4 + 2x^2 + 3x + 1 \] Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}(x^4) + \frac{d}{dx}(2x^2) + \frac{d}{dx}(3x) + \frac{d}{dx}(1) \] ### Step 2: Apply the power rule Using the power rule of differentiation, we find: - The derivative of \(x^4\) is \(4x^3\). - The derivative of \(2x^2\) is \(2 \cdot 2x^{2-1} = 4x\). - The derivative of \(3x\) is \(3\). - The derivative of a constant (1) is \(0\). So, we can write: \[ \frac{dy}{dx} = 4x^3 + 4x + 3 \] ### Step 3: Substitute \(x = 1\) Now, we need to evaluate \(\frac{dy}{dx}\) at \(x = 1\): \[ \frac{dy}{dx}\bigg|_{x=1} = 4(1)^3 + 4(1) + 3 \] ### Step 4: Calculate the values Calculating each term: - \(4(1)^3 = 4\) - \(4(1) = 4\) - \(3 = 3\) Adding these together: \[ \frac{dy}{dx}\bigg|_{x=1} = 4 + 4 + 3 = 11 \] ### Final Answer Thus, \(\frac{dy}{dx}\) at \(x = 1\) is: \[ \boxed{11} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|64 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If y=6 x^(5)-4x^(4)+2x^(2)+3x+2 , then find (dy)/(dx) at x=-1.

If y=|x-x^(2)| , then (dy)/(dx)" at "x=1 .

If x^2+x y+y^2=7/4, then (dy)/(dx) at x=1 and y=1/2 is:

If y=2x^(3)+3x^(2)+6x+1 , then (dy)/(dx) will be -

If y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n)) then (dy)/(dx) at x=0 is

If y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n)) then (dy)/(dx) at x=0 is

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If y= (x^2 +3)/( x^3 + 2x) , find (dy)/( dx) at x=1 .

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b