Home
Class 12
MATHS
The lines (x-2)/1=(y-3)/2=(z-4)/(-2k)and...

The lines `(x-2)/1=(y-3)/2=(z-4)/(-2k)`and
`(x-1)/k=(y-2)/3=(z-6)/1` are coplanar if

A

`k = 0, k = 2`

B

`k=(5+sqrt(15))/2, k =3`

C

`k=(5 pm sqrt(15))/2`

D

`k = 3, k = 5`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the lines \[ \frac{x-2}{1} = \frac{y-3}{2} = \frac{z-4}{-2k} \] and \[ \frac{x-1}{k} = \frac{y-2}{3} = \frac{z-6}{1} \] are coplanar, we can follow these steps: ### Step 1: Identify the parameters of the lines For the first line, we can express it in the form: - Point \( P_1 = (2, 3, 4) \) - Direction ratios \( a_1 = 1, b_1 = 2, c_1 = -2k \) For the second line, we have: - Point \( P_2 = (1, 2, 6) \) - Direction ratios \( a_2 = k, b_2 = 3, c_2 = 1 \) ### Step 2: Use the coplanarity condition The lines are coplanar if the following determinant is equal to zero: \[ \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0 \] Substituting the values we have: - \( x_2 - x_1 = 1 - 2 = -1 \) - \( y_2 - y_1 = 2 - 3 = -1 \) - \( z_2 - z_1 = 6 - 4 = 2 \) Thus, the determinant becomes: \[ \begin{vmatrix} -1 & -1 & 2 \\ 1 & 2 & -2k \\ k & 3 & 1 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant, we have: \[ = -1 \begin{vmatrix} 2 & -2k \\ 3 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & -2k \\ k & 1 \end{vmatrix} + 2 \begin{vmatrix} 1 & 2 \\ k & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 2 & -2k \\ 3 & 1 \end{vmatrix} = 2 \cdot 1 - (-2k) \cdot 3 = 2 + 6k = 2 + 6k \) 2. \( \begin{vmatrix} 1 & -2k \\ k & 1 \end{vmatrix} = 1 \cdot 1 - (-2k) \cdot k = 1 + 2k^2 \) 3. \( \begin{vmatrix} 1 & 2 \\ k & 3 \end{vmatrix} = 1 \cdot 3 - 2 \cdot k = 3 - 2k \) Putting it all together: \[ -1(2 + 6k) + 1(1 + 2k^2) + 2(3 - 2k) = 0 \] ### Step 4: Simplify the equation This simplifies to: \[ -2 - 6k + 1 + 2k^2 + 6 - 4k = 0 \] Combining like terms: \[ 2k^2 - 10k + 5 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = -10, c = 5 \): \[ k = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 2 \cdot 5}}{2 \cdot 2} \] Calculating the discriminant: \[ = \frac{10 \pm \sqrt{100 - 40}}{4} = \frac{10 \pm \sqrt{60}}{4} = \frac{10 \pm 2\sqrt{15}}{4} = \frac{5 \pm \sqrt{15}}{2} \] ### Final Result Thus, the values of \( k \) for which the lines are coplanar are: \[ k = \frac{5 + \sqrt{15}}{2} \quad \text{and} \quad k = \frac{5 - \sqrt{15}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - B|47 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - C|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise TRY YOURSELF|97 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if a. k=1or-1 b. k=0or-3 c. k=3or-3 d. k=0or-1

The lines (x-2)/1=(y-3)/1=(z-4)/(-k)a n d(x-1)/k=(y-4)/2=(z-5)/1 are coplanar if a. k=1or-1 b. k=0or-3 c. k=3or-3 d. k=0or-1

If the lines (x-2)/1=(y-3)/1)(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar then k can have (A) exactly two values (B) exactly thre values (C) any value (D) exactly one value

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1) = (y-3)/(1) =(z-4)/(-k) and (x-3)/(k)=(y-4)/(1) = (z-5)/(1) are coplanar if the values of k are

The lines (x-1)/1=(y-2)/2=(z-3)/(3) and (x-1)/1=y/3 =z/4 are

The number of real values of k for which the lines (x)/(1)=(y-1)/(k)=(z)/(-1) and (x-k)/(2k)=(y-k)/(3k-1)=(z-2)/(k) are coplanar, is

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .

Find the value of [a] if the lines (x-2)/(3)=(y+4)/(2)=(z-1)/(5) & (x+1)/(-2)=(y-1)/(3)=(z-a)/(4) are coplanar (where [] denotes greatest integer function)

Show that the lines (x+3)/(-3)=(y-1)/1=(z-5)/5 and (x+1)/(-1)=(y-2)/2=(z-5)/5 are coplanar.

AAKASH INSTITUTE ENGLISH-THREE DIMENSIONAL GEOMETRY -ASSIGNMENT SECTION - A
  1. If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)a n d(x-1)/(3k)=(y-5)/1=(z...

    Text Solution

    |

  2. The number of unit vectors perpendicular to the plane of vectors veca=...

    Text Solution

    |

  3. The lines (x-2)/1=(y-3)/2=(z-4)/(-2k)and (x-1)/k=(y-2)/3=(z-6)/1 are...

    Text Solution

    |

  4. If the lines (x-1)/2=(y+1)/3=z/(5t-1) and (x+1)/(2s+1)=y/2=z/4 are p...

    Text Solution

    |

  5. Find value of lambda if two lines having direction ratios 1, -2, 3 and...

    Text Solution

    |

  6. If plane passes through the point (1, 1,1) and is perpendicular to the...

    Text Solution

    |

  7. Find the equation of the plane containing the line of intersection of ...

    Text Solution

    |

  8. The plane passing through the point (-2, -2, -3) and containing the ...

    Text Solution

    |

  9. Equation of plane parallel to 3x + 4y + 5z - 6 = 0, 6x + 8y + 10z - 16...

    Text Solution

    |

  10. If the plane 3x - 4y + 5z = 0 is parallel to (2x-1)/4=(1-y)/(3)=(z-2)...

    Text Solution

    |

  11. Find the foot of perpendicular from (0, 2, 3) to the line (x-3)/2= (...

    Text Solution

    |

  12. The shortest distance between the lines (x-1)/2= (y-1)/3=(z+2)/6and ...

    Text Solution

    |

  13. Show that the angle between two diagonals of a cube is cos^(-1)sqrt(1/...

    Text Solution

    |

  14. The distance of a plane 3x + 4y - 5z = 60 from origin

    Text Solution

    |

  15. Find the equation of line passing through (2, -1, 3) and equally incli...

    Text Solution

    |

  16. The lines (x-1)/1=(y-2)/2=(z-3)/(3) and (x-1)/1=y/3 =z/4 are

    Text Solution

    |

  17. The equation of the plane through the line of intersection of the plan...

    Text Solution

    |

  18. Lines vecr = veca(1) + lambda vecb and vecr = veca(2) + svecb will lie...

    Text Solution

    |

  19. The equation of a plane through the point (2, 3, 1) and (4, -5, 3) a...

    Text Solution

    |

  20. If the line (x-4)/(1)=(y-2)/(1)=(z-k)/(2) lies exactly on the plane 2x...

    Text Solution

    |