Home
Class 12
MATHS
STATEMENT-1 : Equation of the plane thro...

STATEMENT-1 : Equation of the plane through (2, 3, 3) and (1, -3, -4) and parallel to `(x-1)/3=(y-3)/4=(z+1)/5`
is `x + y - 7z =16`.
STATEMENT-2 : The shortest distance between two non-intersecting lines `vecr=veca+lambda vecb and vecr=vecc +muvecd` is
`abs(([(vecc-veca)vecb vecd])/(vecbxxvecd)).`
STATEMENT-3 : The vector equation of a plane through a point having position vector `veca` and parallel to vector
`vecb and vecc`is,` vecr = veca + lambdavecb + mu vecc`.

A

(a)F F F

B

(b)F F T

C

(c)T F T

D

(d)F T F

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze each statement one by one and determine their validity. ### Step 1: Analyze Statement 1 **Statement 1:** The equation of the plane through points \( (2, 3, 3) \) and \( (1, -3, -4) \) and parallel to the line given by \( \frac{x-1}{3} = \frac{y-3}{4} = \frac{z+1}{5} \) is \( x + y - 7z = 16 \). **Solution:** 1. **Find the direction ratios of the line:** The direction ratios from the line equation are \( (3, 4, 5) \). 2. **Find the vector from point A to point B:** \[ \vec{AB} = (1 - 2, -3 - 3, -4 - 3) = (-1, -6, -7) \] 3. **Use the normal vector:** The normal vector of the plane can be found using the cross product of \( \vec{AB} \) and the direction ratios of the line: \[ \vec{n} = \vec{AB} \times (3, 4, 5) \] \[ \vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -6 & -7 \\ 3 & 4 & 5 \end{vmatrix} \] Calculating the determinant: \[ \vec{n} = \hat{i}((-6)(5) - (-7)(4)) - \hat{j}((-1)(5) - (-7)(3)) + \hat{k}((-1)(4) - (-6)(3)) \] \[ = \hat{i}(-30 + 28) - \hat{j}(-5 + 21) + \hat{k}(-4 + 18) \] \[ = \hat{i}(-2) - \hat{j}(16) + \hat{k}(14) \] Thus, the normal vector \( \vec{n} = (-2, -16, 14) \). 4. **Equation of the plane:** The equation of the plane can be written as: \[ -2(x - 2) - 16(y - 3) + 14(z - 3) = 0 \] Expanding this: \[ -2x + 4 - 16y + 48 + 14z - 42 = 0 \] \[ -2x - 16y + 14z + 10 = 0 \] Dividing by -2 gives: \[ x + 8y - 7z = -5 \] This does not match the given equation \( x + y - 7z = 16 \). Therefore, **Statement 1 is false.** ### Step 2: Analyze Statement 2 **Statement 2:** The shortest distance between two non-intersecting lines \( \vec{r} = \vec{a} + \lambda \vec{b} \) and \( \vec{r} = \vec{c} + \mu \vec{d} \) is given by \( \frac{|\left[(\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})\right]|}{|\vec{b} \times \vec{d}|} \). **Solution:** The formula for the shortest distance between two skew lines is indeed given by: \[ d = \frac{|(\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})|}{|\vec{b} \times \vec{d}|} \] Thus, **Statement 2 is true.** ### Step 3: Analyze Statement 3 **Statement 3:** The vector equation of a plane through a point having position vector \( \vec{a} \) and parallel to vectors \( \vec{b} \) and \( \vec{c} \) is \( \vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c} \). **Solution:** This statement correctly describes the vector equation of a plane. Therefore, **Statement 3 is true.** ### Conclusion - **Statement 1:** False - **Statement 2:** True - **Statement 3:** True ### Final Answer The correct statements are 2 and 3, while statement 1 is false.
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - I|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - G|7 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

The vector equation of the plane passing through the origin and the line of intersection of the planes vecr.veca=lamdaandvecr.vecb=mu is

The shortest distance between the lines vecr-veca+kvecb and vecr=veca+lvecc is ( vecb and vecc are non collinear) (A) 0 (B) |vecb.vecc| (C) (|vecbxxvecc|)/(|veca|) (D) (|vecb.vecc|)/(|veca|)

Show that the plane through the points veca,vecb,vecc has the equation [vecr vecb vecc]+[vecr vecc veca]+[vecr veca vecb]=[veca vecb vecc]

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

Prove that the shortest distance between two lines AB and CD is (|(vecc-veca).(vecb-veca)xx(vecd-vecc)|)/(|(vecb-veca)xxvec(d-vecc)|) where veca,vecb,vecc,vecd are the position vectors of points A,B,C,D respectively.

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

Solve the vector equation vecr xx vecb = veca xx vecb, vecr.vecc = 0 provided that vecc is not perpendicular to vecb

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0