Home
Class 12
MATHS
STATEMENT-1 : If l, m, n are direction ...

STATEMENT-1 : If l, m, n are direction ratios of a straight line then minimum value of `l^(2) + m^(2) + n^(2)` will
be 1.
STATEMENT-2 : If the line joining the origin to the point (0, -1, 9) makes angles `alpha, beta and gamma` eith the positive
direction of the axes then the value of `cos 2 alpha + cos2beta +cos2gamma` is -1
STATEMENT-3 : The angle between two lines that have the direction ratios (1, 2, 3) and (3, -2, 1) is
`cos^(-1)(1/7).`

A

T T T

B

F T F

C

F F T

D

F T T

Text Solution

AI Generated Solution

The correct Answer is:
To analyze the three statements provided in the question, we will evaluate each statement one by one. ### Statement 1: **Statement:** If \( l, m, n \) are direction ratios of a straight line, then the minimum value of \( l^2 + m^2 + n^2 \) will be 1. **Solution:** 1. Direction ratios \( l, m, n \) are not necessarily normalized. They can be scaled by any non-zero constant. 2. The direction cosines \( \cos \alpha, \cos \beta, \cos \gamma \) satisfy the equation \( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \). 3. If we take \( l = k \cos \alpha, m = k \cos \beta, n = k \cos \gamma \) for some constant \( k \), we have: \[ l^2 + m^2 + n^2 = k^2 (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) = k^2 \cdot 1 = k^2 \] 4. The minimum value of \( l^2 + m^2 + n^2 \) can be made arbitrarily small by choosing \( k \) close to 0. Thus, the minimum value is not necessarily 1, contradicting the statement. **Conclusion:** Statement 1 is **False**. ### Statement 2: **Statement:** If the line joining the origin to the point (0, -1, 9) makes angles \( \alpha, \beta, \gamma \) with the positive direction of the axes, then the value of \( \cos 2\alpha + \cos 2\beta + \cos 2\gamma \) is -1. **Solution:** 1. The direction cosines corresponding to the point (0, -1, 9) can be calculated as follows: \[ \cos \alpha = \frac{0}{\sqrt{0^2 + (-1)^2 + 9^2}} = 0, \quad \cos \beta = \frac{-1}{\sqrt{0^2 + (-1)^2 + 9^2}} = \frac{-1}{\sqrt{82}}, \quad \cos \gamma = \frac{9}{\sqrt{0^2 + (-1)^2 + 9^2}} = \frac{9}{\sqrt{82}} \] 2. Now, using the identity \( \cos 2\theta = 2\cos^2 \theta - 1 \): \[ \cos 2\alpha = 2(0^2) - 1 = -1 \] \[ \cos 2\beta = 2\left(-\frac{1}{\sqrt{82}}\right)^2 - 1 = 2\left(\frac{1}{82}\right) - 1 = \frac{2}{82} - 1 = \frac{2 - 82}{82} = \frac{-80}{82} = -\frac{40}{41} \] \[ \cos 2\gamma = 2\left(\frac{9}{\sqrt{82}}\right)^2 - 1 = 2\left(\frac{81}{82}\right) - 1 = \frac{162}{82} - 1 = \frac{162 - 82}{82} = \frac{80}{82} = \frac{40}{41} \] 3. Now, summing them up: \[ \cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1 - \frac{40}{41} + \frac{40}{41} = -1 \] **Conclusion:** Statement 2 is **True**. ### Statement 3: **Statement:** The angle between two lines that have the direction ratios (1, 2, 3) and (3, -2, 1) is \( \cos^{-1}\left(\frac{1}{7}\right) \). **Solution:** 1. Let the direction ratios of the two lines be \( (l_1, m_1, n_1) = (1, 2, 3) \) and \( (l_2, m_2, n_2) = (3, -2, 1) \). 2. The cosine of the angle \( \theta \) between the two lines is given by: \[ \cos \theta = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}} \] 3. Calculating the numerator: \[ l_1 l_2 + m_1 m_2 + n_1 n_2 = (1)(3) + (2)(-2) + (3)(1) = 3 - 4 + 3 = 2 \] 4. Calculating the denominators: \[ \sqrt{l_1^2 + m_1^2 + n_1^2} = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] \[ \sqrt{l_2^2 + m_2^2 + n_2^2} = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14} \] 5. Thus, we have: \[ \cos \theta = \frac{2}{\sqrt{14} \cdot \sqrt{14}} = \frac{2}{14} = \frac{1}{7} \] **Conclusion:** Statement 3 is **True**. ### Final Conclusion: - Statement 1: False - Statement 2: True - Statement 3: True
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - I|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - G|7 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If a line makes angles alpha,beta,gamma with the positive direction of coordinate axes, then write the value of sin^2alpha+sin^2beta+sin^2gammadot

If a line makes angle "alpha","beta\ and\ gamma" with the coordinate axes, find the value of "cos"2"alpha"+"cos"2"beta"+"cos"2"gamma"dot

If a line makes angles alpha, beta, gamma when the positive direction of coordinates axes, then write the value of sin^(2) alpha + sin^(2) beta + sin^(2) gamma .

The value of cos^(2) alpha +cos^(2) beta +cos^(2) gamma is _____ .

If a line makes angles alpha,betaa n dgamma with threew-dimensional coordinate axes, respectively, then find the value of cos2alpha+cos2beta+cos2gammadot

If a line makes angles alpha,betaa n dgamma with three-dimensional coordinate axes, respectively, then find the value of cos2alpha+cos2beta+cos2gammadot

If a line makes angles alpha, beta, gamma, delta with the diafonals of a cubes then the value of 9(cos 2alpha + cos 2beta + cos2gamma + cos 2 delta )^(2) equals ….......

A line makes angles alpha,beta and gamma with the coordinate axes. If alpha+beta=90^0, then find gamma .

A line makes angles alpha,beta,gammaa n ddelta with the diagonals of a cube. Show that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4//3.

A line makes angles alpha,beta,gamma and delta with the diagonals of a cube, prove that cos^2alpha+cos^2beta+cos^2gamma+cos^2delta=4/3