Home
Class 12
MATHS
If veca=hati+2hatj+3hatk, vecb=-2hati+ha...

If `veca=hati+2hatj+3hatk, vecb=-2hati+hatj+hatk, vecc=10hatj-hatk` and `vecaxx(vecbxxvecc)=uveca+v vecb+wvecv`, then

A

w=0

B

w=-3

C

u=0

D

v=17

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( u \), \( v \), and \( w \) in the expression \( \vec{a} \times (\vec{b} \times \vec{c}) = u \vec{a} + v \vec{b} + w \vec{c} \). ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k} \] \[ \vec{b} = -2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{c} = 10\hat{j} - \hat{k} \] ### Step 2: Calculate \( \vec{b} \times \vec{c} \) Using the determinant method for the cross product: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & 1 \\ 0 & 10 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left( 1 \cdot (-1) - 1 \cdot 10 \right) - \hat{j} \left( -2 \cdot (-1) - 1 \cdot 0 \right) + \hat{k} \left( -2 \cdot 10 - 1 \cdot 0 \right) \] \[ = \hat{i} (-1 - 10) - \hat{j} (2) + \hat{k} (-20) \] \[ = -11\hat{i} - 2\hat{j} - 20\hat{k} \] ### Step 3: Calculate \( \vec{a} \times (\vec{b} \times \vec{c}) \) Now we need to compute \( \vec{a} \times (\vec{b} \times \vec{c}) \): \[ \vec{a} \times (-11\hat{i} - 2\hat{j} - 20\hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -11 & -2 & -20 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left( 2 \cdot (-20) - 3 \cdot (-2) \right) - \hat{j} \left( 1 \cdot (-20) - 3 \cdot (-11) \right) + \hat{k} \left( 1 \cdot (-2) - 2 \cdot (-11) \right) \] \[ = \hat{i} (-40 + 6) - \hat{j} (-20 + 33) + \hat{k} (-2 + 22) \] \[ = \hat{i} (-34) - \hat{j} (13) + \hat{k} (20) \] \[ = -34\hat{i} - 13\hat{j} + 20\hat{k} \] ### Step 4: Compare with \( u\vec{a} + v\vec{b} + w\vec{c} \) We need to express \( -34\hat{i} - 13\hat{j} + 20\hat{k} \) in terms of \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \): \[ u \vec{a} + v \vec{b} + w \vec{c} = u(\hat{i} + 2\hat{j} + 3\hat{k}) + v(-2\hat{i} + \hat{j} + \hat{k}) + w(0\hat{i} + 10\hat{j} - \hat{k}) \] \[ = (u - 2v)\hat{i} + (2u + v + 10w)\hat{j} + (3u + v - w)\hat{k} \] ### Step 5: Set up equations From the comparison: 1. \( u - 2v = -34 \) 2. \( 2u + v + 10w = -13 \) 3. \( 3u + v - w = 20 \) ### Step 6: Solve the equations From equation 1: \[ u = -34 + 2v \] Substituting \( u \) into equation 2: \[ 2(-34 + 2v) + v + 10w = -13 \] \[ -68 + 4v + v + 10w = -13 \] \[ 5v + 10w = 55 \quad \text{(Equation 4)} \] \[ v + 2w = 11 \quad \text{(Equation 5)} \] Substituting \( u \) into equation 3: \[ 3(-34 + 2v) + v - w = 20 \] \[ -102 + 6v + v - w = 20 \] \[ 7v - w = 122 \quad \text{(Equation 6)} \] ### Step 7: Solve Equations 5 and 6 From equation 5: \[ w = \frac{11 - v}{2} \] Substituting into equation 6: \[ 7v - \frac{11 - v}{2} = 122 \] Multiplying through by 2 to eliminate the fraction: \[ 14v - (11 - v) = 244 \] \[ 14v + v - 11 = 244 \] \[ 15v = 255 \quad \Rightarrow \quad v = 17 \] Now substituting \( v \) back to find \( w \): \[ w = \frac{11 - 17}{2} = \frac{-6}{2} = -3 \] Now substituting \( v \) back to find \( u \): \[ u = -34 + 2(17) = -34 + 34 = 0 \] ### Final Answers Thus, the values are: \[ u = 0, \quad v = 17, \quad w = -3 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-II|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

If veca=3hati-hatj+2hatk, vecb=2hati+hatj-hatk, vecc=hati-2hatj+2hatk , find (vecaxxvecb)xxvecc and vecaxx(vecbxxvecc) and hence show that (vecaxxvecb)xxvecc!=veca(vecbxxvecc)

If veca=2hati+2hatj-hatk, vecb=3hati-hatj-hatk and vecc=hati+2hatj-3hatk then verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc .

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=hati+hatj+hatk, vecb=2hati-hatj and vecc=3hatj+hatk then verify the following: veca.(vecb+vecc)=veca.vecb+veca.vecc .

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :