Home
Class 12
MATHS
STATEMENT-1 : |vecu.vecv|=cos theta. ...

STATEMENT-1 : `|vecu.vecv|=cos theta`.
and
STATEMENT-2 : `|vecuxxvecv|=sin theta`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-F (Matrix-Match Type Questions)|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-G (Integer Answer Type Questions)|2 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-II|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+vecwxxvecu=vecv , then prove that |(vecuxxvecv).vecw|le1/2 and that the equality holds if and only if vecu is perpendicular to vecv .

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 vecu xx 3vecv is a unit vector for

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 vecu xx 3vecv is a unit vector for

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 uvecu xx 3vecv is a unit vector for

Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if the projection of vecv " along " vecu is equal to that of vecw along vecu and vectors vecv and vecw are perpendicular to each other then |vecu-vecv + vecw| equals