Home
Class 12
MATHS
STATEMENT-1: If veca,vecb,vecc, are unit...

STATEMENT-1: If `veca,vecb,vecc`, are unit vectors such that `veca+vecb+vecc=0` and `veca.vecb+vecb.vecc+vecc.veca=-(3)/(2)`.
STATEMENT-2 : `(vecx+vecy)^(2)=|vecx|^(2)+|vecy|^(2)+2(vecx.vecy)`.

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-5

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-5

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given statements and prove their validity step by step. ### Step 1: Analyze Statement 1 We are given three unit vectors \( \vec{a}, \vec{b}, \vec{c} \) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] This implies that: \[ \vec{c} = -(\vec{a} + \vec{b}) \] ### Step 2: Calculate the Magnitudes Since \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors, we have: \[ |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \] Thus: \[ |\vec{c}|^2 = 1 \implies \vec{c} \cdot \vec{c} = 1 \] ### Step 3: Expand the Equation We can expand \( |\vec{c}|^2 \): \[ \vec{c} \cdot \vec{c} = (-\vec{a} - \vec{b}) \cdot (-\vec{a} - \vec{b}) = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) \] This gives: \[ \vec{a} \cdot \vec{a} + 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 1 \] Since \( \vec{a} \cdot \vec{a} = 1 \) and \( \vec{b} \cdot \vec{b} = 1 \), we have: \[ 1 + 2\vec{a} \cdot \vec{b} + 1 = 1 \] Simplifying this, we get: \[ 2 + 2\vec{a} \cdot \vec{b} = 1 \implies 2\vec{a} \cdot \vec{b} = -1 \implies \vec{a} \cdot \vec{b} = -\frac{1}{2} \] ### Step 4: Calculate the Other Dot Products Using symmetry and the fact that the vectors are unit vectors, we can derive: \[ \vec{b} \cdot \vec{c} = \vec{b} \cdot (-\vec{a} - \vec{b}) = -\vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b} = -(-\frac{1}{2}) - 1 = \frac{1}{2} - 1 = -\frac{1}{2} \] Similarly: \[ \vec{c} \cdot \vec{a} = \vec{c} \cdot (-\vec{a} - \vec{b}) = -\vec{c} \cdot \vec{a} - \vec{c} \cdot \vec{b} = -(-\frac{1}{2}) - (-\frac{1}{2}) = \frac{1}{2} + \frac{1}{2} = 1 \] ### Step 5: Sum of Dot Products Now we can sum these dot products: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{1}{2} - \frac{1}{2} + 1 = -\frac{3}{2} \] This confirms that Statement 1 is true. ### Step 6: Analyze Statement 2 The second statement is a well-known vector identity: \[ (\vec{x} + \vec{y})^2 = |\vec{x}|^2 + |\vec{y}|^2 + 2(\vec{x} \cdot \vec{y}) \] This is always true for any vectors \( \vec{x} \) and \( \vec{y} \). ### Conclusion Both statements are true, and Statement 2 provides a correct explanation for Statement 1.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-F (Matrix-Match Type Questions)|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-G (Integer Answer Type Questions)|2 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-II|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

Assertion: If veca,vecb,vecc are unit such that veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca=-3/2 , Reason (vecx+vecy)^2=|vecx|^2+|vecy|^2+2(vecx.vecy) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2