Home
Class 12
MATHS
STATEMENT-1 : If vecaxxvecb=veccxxvecd a...

STATEMENT-1 : If `vecaxxvecb=veccxxvecd` and `vecaxxvecc=vecbxxvecd`, then `veca-vecd` is perpendicular to `vecb-vecc`.
And
STATEMENT-2 : If `vecP` and `vecQ` are perpendicular then `vecP.vecQ=0`.

A

(a)Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-6

B

(b)Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-6

C

(c)Statement-1 is True, Statement-2 is False

D

(d)Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements provided and establish their validity. ### Step 1: Analyze Statement 1 We are given: 1. \( \vec{a} \times \vec{b} = \vec{c} \times \vec{d} \) (Equation 1) 2. \( \vec{a} \times \vec{c} = \vec{b} \times \vec{d} \) (Equation 2) From these equations, we want to show that \( \vec{a} - \vec{d} \) is perpendicular to \( \vec{b} - \vec{c} \). ### Step 2: Rearranging the Equations From Equation 1, we can express it as: \[ \vec{a} \times \vec{b} - \vec{c} \times \vec{d} = \vec{0} \] This implies that the vectors \( \vec{a} \times \vec{b} \) and \( \vec{c} \times \vec{d} \) are equal. From Equation 2, we can express it as: \[ \vec{a} \times \vec{c} - \vec{b} \times \vec{d} = \vec{0} \] This implies that the vectors \( \vec{a} \times \vec{c} \) and \( \vec{b} \times \vec{d} \) are equal. ### Step 3: Use Vector Properties Using the properties of the cross product, we can manipulate the equations further. We can express the first equation as: \[ \vec{a} \times (\vec{b} - \vec{c}) = \vec{c} \times \vec{d} - \vec{b} \times \vec{d} \] This leads to: \[ \vec{a} \times (\vec{b} - \vec{c}) = \vec{0} \] This means that \( \vec{a} \) is either the zero vector or \( \vec{b} - \vec{c} \) is parallel to \( \vec{a} \). ### Step 4: Establish Perpendicularity To show that \( \vec{a} - \vec{d} \) is perpendicular to \( \vec{b} - \vec{c} \), we can take the dot product: \[ (\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = 0 \] This indicates that \( \vec{a} - \vec{d} \) is perpendicular to \( \vec{b} - \vec{c} \). ### Conclusion for Statement 1 Thus, Statement 1 is true. ### Step 5: Analyze Statement 2 Statement 2 states that if \( \vec{P} \) and \( \vec{Q} \) are perpendicular, then \( \vec{P} \cdot \vec{Q} = 0 \). This is a fundamental property of vectors. If two vectors are perpendicular, their dot product is indeed zero. ### Conclusion for Statement 2 Thus, Statement 2 is also true. ### Final Conclusion Both statements are true.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-F (Matrix-Match Type Questions)|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-G (Integer Answer Type Questions)|2 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-II|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vecd) is parallel to (vecb-vecc) .

Assertion: If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd the (veca-vecd) is perpendicular to (vecb-vecc) ., Reason : If vecp is perpendicular to vecq then vecp.vecq=0 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Two vectors vecP and vecQ that are perpendicular to each other if :

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd then (A) (veca-vecd)=lamda(vecb-vecc) (B) veca+vecd=lamda(vecb+vecc) (C) (veca-vecb)=lamda(vecc+vecd) (D) none of these

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vecd)] , then lamda+mu=

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)