Home
Class 12
MATHS
If x is the root of the equation x^(2) -...

If x is the root of the equation `x^(2) -ix -1 =0` , then
The value of ` x^(51)` is

A

1

B

`-1`

C

i

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^{51} \) where \( x \) is a root of the equation \( x^2 - ix - 1 = 0 \), we will follow these steps: ### Step 1: Solve the quadratic equation The given quadratic equation is: \[ x^2 - ix - 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -i, c = -1 \): \[ x = \frac{-(-i) \pm \sqrt{(-i)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{i \pm \sqrt{-1 - 4(-1)}}{2} \] \[ x = \frac{i \pm \sqrt{-1 + 4}}{2} \] \[ x = \frac{i \pm \sqrt{3}}{2} \] ### Step 2: Identify the roots The roots of the equation are: \[ x_1 = \frac{i + \sqrt{3}}{2}, \quad x_2 = \frac{i - \sqrt{3}}{2} \] ### Step 3: Convert to polar form We can express \( x_1 \) in polar form. The modulus \( r \) and argument \( \theta \) can be calculated as follows: \[ r = |x_1| = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] The argument \( \theta \) is given by: \[ \theta = \tan^{-1}\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, we can write: \[ x_1 = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) \] ### Step 4: Calculate \( x^{51} \) Using De Moivre's theorem: \[ x^{51} = \left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)^{51} = \cos\left(51 \cdot \frac{\pi}{6}\right) + i\sin\left(51 \cdot \frac{\pi}{6}\right) \] Calculating \( 51 \cdot \frac{\pi}{6} \): \[ 51 \cdot \frac{\pi}{6} = \frac{51\pi}{6} = \frac{50\pi}{6} + \frac{\pi}{6} = \frac{25\pi}{3} + \frac{\pi}{6} \] Now, we can reduce \( \frac{25\pi}{3} \) modulo \( 2\pi \): \[ \frac{25\pi}{3} = 8\pi + \frac{\pi}{3} \quad (\text{since } 8\pi = 2\pi \cdot 4) \] Thus: \[ \frac{25\pi}{3} \equiv \frac{\pi}{3} \mod 2\pi \] Now adding \( \frac{\pi}{6} \): \[ \frac{25\pi}{3} + \frac{\pi}{6} = \frac{50\pi}{6} + \frac{\pi}{6} = \frac{51\pi}{6} \] Reducing \( \frac{51\pi}{6} \) modulo \( 2\pi \): \[ \frac{51\pi}{6} = 8\pi + \frac{3\pi}{6} = 8\pi + \frac{\pi}{2} \equiv \frac{\pi}{2} \mod 2\pi \] ### Step 5: Final calculation Thus: \[ x^{51} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = 0 + i \cdot 1 = i \] ### Conclusion The value of \( x^{51} \) is: \[ \boxed{i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion -Reason Type Questions|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-F ( Matrix -Match type Question)|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If x is the root of the equation x^(2) -ix -1 =0 , then The value of x^(20) + 1/x^(20) may be

The roots of the equation x^(2) +6ix-9=0 are :

Find the roots of the equation x^2+7x-1=0

Find the roots of the equation x^(2) + ix - 1 - i = 0

Find the roots of the equation 2x^2 - x + 1/8 = 0

If x is the root of the equation x^(2) -ix -1 =0 , then x^(2013) - 1/x^(2013) may be

The roots of the equation 12 x^2 + x - 1 = 0 is :

Solve the equation x^(2)+ 2ix+15=0 .

The roots of the equation x^(3) -2x^(2) -x +2 =0 are

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is