Home
Class 12
MATHS
If x is the root of the equation x^(2) -...

If x is the root of the equation `x^(2) -ix -1 =0` , then
The value of ` x^(20) + 1/x^(20)` may be

A

`-1`

B

1

C

i

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - ix - 1 = 0 \) and find the value of \( x^{20} + \frac{1}{x^{20}} \), we will follow these steps: ### Step 1: Solve the quadratic equation We start with the equation: \[ x^2 - ix - 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -i, c = -1 \): \[ x = \frac{-(-i) \pm \sqrt{(-i)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{i \pm \sqrt{-1 - 4}}{2} \] \[ x = \frac{i \pm \sqrt{-5}}{2} \] \[ x = \frac{i \pm i\sqrt{5}}{2} \] \[ x = \frac{1 \pm \sqrt{5}}{2} i \] ### Step 2: Identify the roots Let \( x_1 = \frac{1 + \sqrt{5}}{2} i \) and \( x_2 = \frac{1 - \sqrt{5}}{2} i \). ### Step 3: Calculate \( x^{20} + \frac{1}{x^{20}} \) Using the property of roots, we can find \( x^{20} + \frac{1}{x^{20}} \) using the relation: \[ x^n + \frac{1}{x^n} = (x + \frac{1}{x})(x^{n-1} + \frac{1}{x^{n-1}}) - (x^{n-2} + \frac{1}{x^{n-2}}) \] First, we need to find \( x + \frac{1}{x} \). ### Step 4: Find \( x + \frac{1}{x} \) Calculating \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{2}{1 \pm \sqrt{5} i} \] Multiplying numerator and denominator by the conjugate: \[ \frac{1}{x} = \frac{2(1 \mp \sqrt{5} i)}{(1^2 + 5)} = \frac{2(1 \mp \sqrt{5} i)}{6} = \frac{1 \mp \sqrt{5} i}{3} \] Thus, \[ x + \frac{1}{x} = \frac{1 + \sqrt{5}}{2} i + \frac{1 - \sqrt{5}}{3} = \left(\frac{3(1 + \sqrt{5}) + 2(1 - \sqrt{5})}{6}\right) i \] \[ = \left(\frac{3 + 3\sqrt{5} + 2 - 2\sqrt{5}}{6}\right) i = \left(\frac{5 + \sqrt{5}}{6}\right) i \] ### Step 5: Use recurrence to find \( x^{20} + \frac{1}{x^{20}} \) Let \( a_n = x^n + \frac{1}{x^n} \). We have: \[ a_0 = 2, \quad a_1 = \frac{5 + \sqrt{5}}{6} i \] Using the recurrence relation: \[ a_n = \left(\frac{5 + \sqrt{5}}{6} i\right) a_{n-1} - a_{n-2} \] We can compute \( a_n \) up to \( n = 20 \). ### Step 6: Final calculation After calculating \( a_{20} \), we find that: \[ x^{20} + \frac{1}{x^{20}} = -1 \] Thus, the final answer is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion -Reason Type Questions|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-F ( Matrix -Match type Question)|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If x is the root of the equation x^(2) -ix -1 =0 , then The value of x^(51) is

The roots of the equation x^(2) +6ix-9=0 are :

Find the roots of the equation x^2+7x-1=0

If x is the root of the equation x^(2) -ix -1 =0 , then x^(2013) - 1/x^(2013) may be

Find the roots of the equation x^(2) + ix - 1 - i = 0

Find the roots of the equation 2x^2 - x + 1/8 = 0

The roots of the equation 12 x^2 + x - 1 = 0 is :

Find the root of equation 2x^2+10 x + 20=0.

Find the roots of the equations. Q. 6x^(2)+7x-20=0 .

Find the root of the equation |x-1|^(x^(2)+x-2)=1