Home
Class 12
MATHS
If x is the root of the equation x^(2) -...

If x is the root of the equation `x^(2) -ix -1 =0` , then
`x^(2013) - 1/x^(2013)` may be

A

`-1`

B

1

C

`-2i`

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^{2013} - \frac{1}{x^{2013}} \) given that \( x \) is a root of the equation \( x^2 - ix - 1 = 0 \). ### Step 1: Find the roots of the equation The equation is given as: \[ x^2 - ix - 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -i, c = -1 \): \[ x = \frac{-(-i) \pm \sqrt{(-i)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] Calculating \( (-i)^2 \): \[ (-i)^2 = -1 \] Thus, we have: \[ x = \frac{i \pm \sqrt{-1 + 4}}{2} = \frac{i \pm \sqrt{3}}{2} \] This gives us the roots: \[ x = \frac{\sqrt{3}}{2} + \frac{1}{2}i \quad \text{or} \quad x = \frac{\sqrt{3}}{2} - \frac{1}{2}i \] ### Step 2: Express \( x \) in polar form The root \( x = \frac{\sqrt{3}}{2} + \frac{1}{2}i \) can be expressed in polar form. The modulus \( r \) is given by: \[ r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, we can write: \[ x = e^{i\frac{\pi}{6}} \] ### Step 3: Calculate \( x^{2013} \) Using the polar form: \[ x^{2013} = \left(e^{i\frac{\pi}{6}}\right)^{2013} = e^{i\frac{2013\pi}{6}} = e^{i335.5\pi} \] To simplify \( 335.5\pi \): \[ 335.5 \mod 2 = 1.5 \quad \text{(since \( 335.5 = 167 \cdot 2 + 1.5 \))} \] Thus: \[ x^{2013} = e^{i\frac{3\pi}{2}} = -i \] ### Step 4: Calculate \( \frac{1}{x^{2013}} \) Now, we find: \[ \frac{1}{x^{2013}} = \frac{1}{-i} = i \] ### Step 5: Find \( x^{2013} - \frac{1}{x^{2013}} \) Now we compute: \[ x^{2013} - \frac{1}{x^{2013}} = -i - i = -2i \] ### Final Answer Thus, the value of \( x^{2013} - \frac{1}{x^{2013}} \) is: \[ \boxed{-2i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion -Reason Type Questions|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-F ( Matrix -Match type Question)|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If x is the root of the equation x^(2) -ix -1 =0 , then The value of x^(20) + 1/x^(20) may be

If x is the root of the equation x^(2) -ix -1 =0 , then The value of x^(51) is

The roots of the equation x^(2) +6ix-9=0 are :

Find the roots of the equation x^2+7x-1=0

Find the roots of the equation 2x^2 - x + 1/8 = 0

Find the roots of the equation x^(2) + ix - 1 - i = 0

The roots of the equation 12 x^2 + x - 1 = 0 is :

Find the root of the equation |x-1|^(x^(2)+x-2)=1

Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then