Home
Class 12
MATHS
(1+x)^(n)=a(0)+a(1)x+a(2)x^(2) +......+a...

`(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n)` then
Find the sum of the series ` a_(0) +a_(2)+a_(4) +……`

A

`2^(n)`

B

`2^(n-1)`

C

2

D

`2^(n -2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series \( a_0 + a_2 + a_4 + \ldots \) given that \( (1+x)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \). ### Step-by-Step Solution: 1. **Identify the Binomial Expansion**: The expression \( (1+x)^n \) can be expanded using the binomial theorem: \[ (1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] Here, \( a_k = \binom{n}{k} \). 2. **Substitute \( x = 1 \)**: Substitute \( x = 1 \) into the equation: \[ (1+1)^n = a_0 + a_1 + a_2 + \ldots + a_n \] This simplifies to: \[ 2^n = a_0 + a_1 + a_2 + \ldots + a_n \tag{1} \] 3. **Substitute \( x = -1 \)**: Now substitute \( x = -1 \): \[ (1-1)^n = a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^n a_n \] This simplifies to: \[ 0 = a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^n a_n \tag{2} \] 4. **Add Equations (1) and (2)**: Now, add equations (1) and (2): \[ 2^n + 0 = (a_0 + a_1 + a_2 + \ldots + a_n) + (a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^n a_n) \] This results in: \[ 2^n = 2(a_0 + a_2 + a_4 + \ldots) \tag{3} \] Here, all the odd-indexed terms cancel out. 5. **Solve for the Sum of Even-Indexed Coefficients**: From equation (3), we can isolate the sum of the even-indexed coefficients: \[ a_0 + a_2 + a_4 + \ldots = \frac{2^n}{2} = 2^{n-1} \] ### Final Answer: Thus, the sum of the series \( a_0 + a_2 + a_4 + \ldots \) is: \[ \boxed{2^{n-1}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion -Reason Type Questions|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-F ( Matrix -Match type Question)|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1+x)^n=a_0+a_1x+a_2x^2).....+a_nx^n The sum of the series a_(0) +a_(4) +a_(8)+a_(12)+ …… is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

Let (1 + x)^(36) = a_(0) +a_(1) x + a_(2) x^(2) +...+ a_(36)x^(36) . Then Statememt-1: a_(0) +a_(3) +a_(6) +…+a_(36)= (2)/(3) (2^(35) +1) Statement-2: a_(0) + a_(2) +a_(4) +…+ a_(36) = 2^(35)

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is

If (1+x+x^(2))^(3n+1)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(6n+2)x^(6n+2) , then find the value of sum_(r=0)^(2n)(a_(3r)-(a_(3r+1)+a_(3r+2))/2) is______.

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n) a_(i) a_(j) a_(k) and so on . If (1 + x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n) x^(n) the cefficient of x^(n) in the expansion of (x + C_(0))(x + C_(1)) (x + C_(2))...(x + C_(n)) is