Home
Class 12
MATHS
If (1+x)^n=a0+a1x+a2x^2).....+anx^n The ...

If `(1+x)^n=a_0+a_1x+a_2x^2).....+a_nx^n` The sum of the series ` a_(0) +a_(4) +a_(8)+a_(12)+ ……` is

A

`2^(n-1) cos""(npi)/4`

B

`2^(n-2) +2^(n/2-1) cos ""(npi)/4`

C

`2^(n-1)+2^(n/2) sin""(npi)/4`

D

`2^(n-1)sin""(npi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series \( a_0 + a_4 + a_8 + a_{12} + \ldots \) from the expansion of \( (1+x)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Expansion**: The coefficients \( a_k \) in the expansion of \( (1+x)^n \) are given by the binomial coefficients: \[ a_k = \binom{n}{k} \] Therefore, we can express the sum we want as: \[ S = a_0 + a_4 + a_8 + a_{12} + \ldots \] 2. **Using Roots of Unity**: To extract the coefficients \( a_0, a_4, a_8, \ldots \), we can use the roots of unity filter. The sum can be computed using the formula: \[ S = \frac{1}{4} \left( (1+1)^n + (1+i)^n + (1-i)^n + (1-1)^n \right) \] Here, \( 1, i, -1, -i \) are the fourth roots of unity. 3. **Calculating Each Term**: - For \( x = 1 \): \[ (1+1)^n = 2^n \] - For \( x = i \): \[ (1+i)^n = \left( \sqrt{2} e^{i \frac{\pi}{4}} \right)^n = 2^{n/2} e^{i \frac{n \pi}{4}} \] - For \( x = -1 \): \[ (1-1)^n = 0^n = 0 \] - For \( x = -i \): \[ (1-i)^n = \left( \sqrt{2} e^{-i \frac{\pi}{4}} \right)^n = 2^{n/2} e^{-i \frac{n \pi}{4}} \] 4. **Combining the Results**: Now, substituting these values into the sum: \[ S = \frac{1}{4} \left( 2^n + 2^{n/2} e^{i \frac{n \pi}{4}} + 2^{n/2} e^{-i \frac{n \pi}{4}} + 0 \right) \] The terms \( e^{i \frac{n \pi}{4}} + e^{-i \frac{n \pi}{4}} \) simplify to \( 2 \cos \left( \frac{n \pi}{4} \right) \): \[ S = \frac{1}{4} \left( 2^n + 2^{n/2} \cdot 2 \cos \left( \frac{n \pi}{4} \right) \right) \] \[ S = \frac{1}{4} \left( 2^n + 2^{n/2 + 1} \cos \left( \frac{n \pi}{4} \right) \right) \] 5. **Final Result**: Thus, the sum of the series \( a_0 + a_4 + a_8 + a_{12} + \ldots \) is: \[ S = \frac{1}{4} \left( 2^n + 2^{(n/2 + 1)} \cos \left( \frac{n \pi}{4} \right) \right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assertion -Reason Type Questions|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-F ( Matrix -Match type Question)|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section -C) (objective Type Questions ( more thena one options are correct )|35 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos

Similar Questions

Explore conceptually related problems

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

Given that (1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n) find i) a_0 + a_1 +a_2 .. . . .+ a_(2n) ii) a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) iii) (a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P then Statement - I : a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are :

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1