Home
Class 12
MATHS
Calculate the value of (i) sin 15^(@...

Calculate the value of
`(i) sin 15^(@) " "(ii) cos 15^(@)" "(iii) tan 15^(@)`
`(iv) sin 75^(@) " "(v) cos 75^(@) " "(vi) tan 75^(@)`

A

`(2-sqrt(3))/(2)`

B

`(sqrt(3)+1)/(2sqrt(2))`

C

`(sqrt(3)-1)/(-2sqrt(2))`

D

`(sqrt(3)-1)/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the values of \( \sin 15^\circ \), \( \cos 15^\circ \), \( \tan 15^\circ \), \( \sin 75^\circ \), \( \cos 75^\circ \), and \( \tan 75^\circ \), we can use trigonometric identities. Let's solve each part step by step. ### (i) Calculate \( \sin 15^\circ \) We can express \( 15^\circ \) as \( 45^\circ - 30^\circ \). Using the sine difference identity: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] Setting \( a = 45^\circ \) and \( b = 30^\circ \): \[ \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ \] Substituting known values: \[ \sin 45^\circ = \frac{1}{\sqrt{2}}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \cos 45^\circ = \frac{1}{\sqrt{2}}, \quad \sin 30^\circ = \frac{1}{2} \] Now substituting these values into the equation: \[ \sin 15^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] Calculating: \[ \sin 15^\circ = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### (ii) Calculate \( \cos 15^\circ \) Using the cosine difference identity: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] So, \[ \cos 15^\circ = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ \] Substituting the known values: \[ \cos 15^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] Calculating: \[ \cos 15^\circ = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### (iii) Calculate \( \tan 15^\circ \) Using the tangent difference identity: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] So, \[ \tan 15^\circ = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} \] Substituting known values: \[ \tan 45^\circ = 1, \quad \tan 30^\circ = \frac{1}{\sqrt{3}} \] Calculating: \[ \tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### (iv) Calculate \( \sin 75^\circ \) Using the sine addition identity: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] So, \[ \sin 75^\circ = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ \] Substituting known values: \[ \sin 75^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] Calculating: \[ \sin 75^\circ = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### (v) Calculate \( \cos 75^\circ \) Using the cosine addition identity: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] So, \[ \cos 75^\circ = \cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ \] Substituting known values: \[ \cos 75^\circ = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] Calculating: \[ \cos 75^\circ = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] ### (vi) Calculate \( \tan 75^\circ \) Using the tangent addition identity: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] So, \[ \tan 75^\circ = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ} \] Substituting known values: \[ \tan 75^\circ = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \] Calculating: \[ \tan 75^\circ = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] ### Summary of Results 1. \( \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \) 2. \( \cos 15^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}} \) 3. \( \tan 15^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \) 4. \( \sin 75^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}} \) 5. \( \cos 75^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} \) 6. \( \tan 75^\circ = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-B (Objective Type Questions One option is correct)|131 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Try Yourself|32 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of (i) sin 22^(@) 30' (ii) cos 22^(@) 30' (iii) tan 22^(@) 30'

Find the values of: (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

Find the value of sin 75^(@) sin 15 ^(@).

Find the values of : (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

Calculate the value of following :- {:cos75^(@)""

The value of tan75

Find the value of : (i) sin75^o (ii) tan15^o

The value of 2 sin 15^(@).cos75^(@)

Find the approximate values of (i) sin 1^(@) (ii) tan 2^(@) (iii) cos 1^(@) .

Find the value of (i) cos(-60^(@)) " " (ii) tan(210^(@))" " (iii) sin (300^(@))" " (iv) cos(120^(@))

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Assignment section-A (Objective Type Questions (One option is correct))
  1. If sintheta(1)+sintheta(2)+sintheta(3)=3, then cos theta(1)+cos theta(...

    Text Solution

    |

  2. The value of cos 10^@ - sin 10^@ is

    Text Solution

    |

  3. Calculate the value of (i) sin 15^(@) " "(ii) cos 15^(@)" "(...

    Text Solution

    |

  4. If tantheta=1/(2) and tanphi=1/(3), then the value of (theta+phi) is

    Text Solution

    |

  5. The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

    Text Solution

    |

  6. The value of sin50^(@) - sin70^(@)+sin10^(@) is equal to

    Text Solution

    |

  7. The value of "sin"(45^(@)+ theta)-"cos(45^(@) - theta) is (i) 2costh...

    Text Solution

    |

  8. If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha ...

    Text Solution

    |

  9. The value of (1-tan^(2)15^(@))/(1+tan^(2)15^(@)) is

    Text Solution

    |

  10. If (1+tantheta)(1+tanphi)=2, then theta + phi=

    Text Solution

    |

  11. Find the value of cos 12^(@)+cos 84^(@)+cos 156^(@)+cos 132^(@)

    Text Solution

    |

  12. The value of sin 50^(0)-sin 70^0+sin 10^0 is equal to a. adot\ 0 b. 1 ...

    Text Solution

    |

  13. The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)...

    Text Solution

    |

  14. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  15. In a triangleABC, if sinA - cosB = cos C, then the measured of angleB ...

    Text Solution

    |

  16. The value of "cos"1^(@)."cos"2^(@)."cos"3^(@)......."cos"179^(@) is

    Text Solution

    |

  17. Prove that: 2cospi/(13)cos(9pi)/(13)+cos(3pi)/(13)+cos(5pi)/(13)=0

    Text Solution

    |

  18. If sintheta +costheta =1, then the value of sin2theta is equal to

    Text Solution

    |

  19. If "tan"A=1/(2),"tan"B=1/(3), then "tan"(2A+B) is equal to

    Text Solution

    |

  20. The minute hand of a watch is 3 cm long. How far does its tip move in ...

    Text Solution

    |