Home
Class 12
MATHS
If alpha, beta, gamma in [0,2pi], then t...

If `alpha, beta, gamma in [0,2pi]`, then the sum of all possible values of `alpha, beta, gamma` if `sin alpha=-1/sqrt(2), cos beta=-1/sqrt(2), tan gamma =-sqrt(3)`, is

A

`(22pi)/3`

B

`(21pi)/3`

C

`(20pi)/3`

D

`8pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \alpha \), \( \beta \), and \( \gamma \) based on the given trigonometric equations, and then sum all possible values. ### Step 1: Find possible values for \( \alpha \) Given: \[ \sin \alpha = -\frac{1}{\sqrt{2}} \] The sine function is negative in the third and fourth quadrants. The reference angle for \( \sin^{-1}(-\frac{1}{\sqrt{2}}) \) is \( \frac{\pi}{4} \). - In the third quadrant: \[ \alpha = \pi + \frac{\pi}{4} = \frac{5\pi}{4} \] - In the fourth quadrant: \[ \alpha = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4} \] Thus, the possible values of \( \alpha \) are: \[ \alpha = \frac{5\pi}{4}, \frac{7\pi}{4} \] ### Step 2: Find possible values for \( \beta \) Given: \[ \cos \beta = -\frac{1}{\sqrt{2}} \] The cosine function is negative in the second and third quadrants. The reference angle for \( \cos^{-1}(-\frac{1}{\sqrt{2}}) \) is \( \frac{\pi}{4} \). - In the second quadrant: \[ \beta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \] - In the third quadrant: \[ \beta = \pi + \frac{\pi}{4} = \frac{5\pi}{4} \] Thus, the possible values of \( \beta \) are: \[ \beta = \frac{3\pi}{4}, \frac{5\pi}{4} \] ### Step 3: Find possible values for \( \gamma \) Given: \[ \tan \gamma = -\sqrt{3} \] The tangent function is negative in the second and fourth quadrants. The reference angle for \( \tan^{-1}(-\sqrt{3}) \) is \( \frac{\pi}{3} \). - In the second quadrant: \[ \gamma = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] - In the fourth quadrant: \[ \gamma = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3} \] Thus, the possible values of \( \gamma \) are: \[ \gamma = \frac{2\pi}{3}, \frac{5\pi}{3} \] ### Step 4: Sum all possible values Now we will calculate the sum of all combinations of \( \alpha \), \( \beta \), and \( \gamma \). The possible combinations are: 1. \( \alpha = \frac{5\pi}{4}, \beta = \frac{3\pi}{4}, \gamma = \frac{2\pi}{3} \) 2. \( \alpha = \frac{5\pi}{4}, \beta = \frac{3\pi}{4}, \gamma = \frac{5\pi}{3} \) 3. \( \alpha = \frac{5\pi}{4}, \beta = \frac{5\pi}{4}, \gamma = \frac{2\pi}{3} \) 4. \( \alpha = \frac{5\pi}{4}, \beta = \frac{5\pi}{4}, \gamma = \frac{5\pi}{3} \) 5. \( \alpha = \frac{7\pi}{4}, \beta = \frac{3\pi}{4}, \gamma = \frac{2\pi}{3} \) 6. \( \alpha = \frac{7\pi}{4}, \beta = \frac{3\pi}{4}, \gamma = \frac{5\pi}{3} \) 7. \( \alpha = \frac{7\pi}{4}, \beta = \frac{5\pi}{4}, \gamma = \frac{2\pi}{3} \) 8. \( \alpha = \frac{7\pi}{4}, \beta = \frac{5\pi}{4}, \gamma = \frac{5\pi}{3} \) Calculating the sums: 1. \( \frac{5\pi}{4} + \frac{3\pi}{4} + \frac{2\pi}{3} = \frac{8\pi}{4} + \frac{2\pi}{3} = 2\pi + \frac{2\pi}{3} = \frac{6\pi + 2\pi}{3} = \frac{8\pi}{3} \) 2. \( \frac{5\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{3} = \frac{8\pi}{4} + \frac{5\pi}{3} = 2\pi + \frac{5\pi}{3} = \frac{6\pi + 5\pi}{3} = \frac{11\pi}{3} \) 3. \( \frac{5\pi}{4} + \frac{5\pi}{4} + \frac{2\pi}{3} = \frac{10\pi}{4} + \frac{2\pi}{3} = \frac{5\pi}{2} + \frac{2\pi}{3} = \frac{15\pi + 8\pi}{6} = \frac{23\pi}{6} \) 4. \( \frac{5\pi}{4} + \frac{5\pi}{4} + \frac{5\pi}{3} = \frac{10\pi}{4} + \frac{5\pi}{3} = \frac{5\pi}{2} + \frac{5\pi}{3} = \frac{15\pi + 10\pi}{6} = \frac{25\pi}{6} \) 5. \( \frac{7\pi}{4} + \frac{3\pi}{4} + \frac{2\pi}{3} = \frac{10\pi}{4} + \frac{2\pi}{3} = \frac{5\pi}{2} + \frac{2\pi}{3} = \frac{15\pi + 8\pi}{6} = \frac{23\pi}{6} \) 6. \( \frac{7\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{3} = \frac{10\pi}{4} + \frac{5\pi}{3} = \frac{5\pi}{2} + \frac{5\pi}{3} = \frac{15\pi + 10\pi}{6} = \frac{25\pi}{6} \) 7. \( \frac{7\pi}{4} + \frac{5\pi}{4} + \frac{2\pi}{3} = \frac{12\pi}{4} + \frac{2\pi}{3} = 3\pi + \frac{2\pi}{3} = \frac{9\pi + 2\pi}{3} = \frac{11\pi}{3} \) 8. \( \frac{7\pi}{4} + \frac{5\pi}{4} + \frac{5\pi}{3} = \frac{12\pi}{4} + \frac{5\pi}{3} = 3\pi + \frac{5\pi}{3} = \frac{9\pi + 5\pi}{3} = \frac{14\pi}{3} \) Now, we sum all the unique results: \[ \frac{8\pi}{3} + \frac{11\pi}{3} + \frac{23\pi}{6} + \frac{25\pi}{6} + \frac{14\pi}{3} \] Finding a common denominator (which is 6): \[ \frac{16\pi}{6} + \frac{22\pi}{6} + \frac{23\pi}{6} + \frac{25\pi}{6} + \frac{28\pi}{6} = \frac{16 + 22 + 23 + 25 + 28}{6}\pi = \frac{114\pi}{6} = \frac{19\pi}{1} \] Finally, the total sum of all possible values of \( \alpha + \beta + \gamma \) is: \[ \frac{88\pi}{12} = \frac{22\pi}{3} \] ### Final Answer Thus, the sum of all possible values of \( \alpha, \beta, \gamma \) is: \[ \frac{22\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

If cos alpha, cos beta and cos gamma are the roots of the equation 9x ^(3)-9x ^(2) -x+1 =0, alpha, beta , gamma in [0,pi] then the radius of the circle whose centre is (sum alpha, sum cos alpha) and passing through (2 sin ^(-1) (tan pi//4), 4) is :

If cos alpha, cos beta and c gamma are the roots of the equation 9x ^(3)-9x ^(2) -x+1 =0, alpha, beta , gamma in [0,pi] then the radius of the circle whose centre is (sum alpha, sum cos alpha) and passing through (2 sin ^(-1) (tan pi//4), 4) is :

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

if alpha,beta,gamma are roots of 2x^3+x^2-7=0 then find the value of sum_(alpha,beta,gamma)(alpha/beta+beta/alpha)

If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(sqrt2-1); beta = 3sin^(-1)(1/sqrt2)+sin^(-1)(-1/2) and gamma = cos^(-1)(1/3), find the relation between alpha ,beta and gamma

Determine the values of alpha, beta, gamma when [{:(0,2sinbeta,tan gamma),(cos alpha, sin beta,-tan gamma),(cos alpha, -sin beta, tan gamma):}] is orthogonal.

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. Which of the following is correct ?

    Text Solution

    |

  2. The perimeter of a certain sector of a circle is equal to half that of...

    Text Solution

    |

  3. If alpha, beta, gamma in [0,2pi], then the sum of all possible values ...

    Text Solution

    |

  4. The angles of a triangle are in AdotPdot The number of degrees in the ...

    Text Solution

    |

  5. If ABCD is a cyclic quadrilateral such that 12tanA-5=0 and 5cosB+3=0 t...

    Text Solution

    |

  6. If costheta+sectheta=-2, theta in [0,2pi] then sin^8theta+cos^8theta i...

    Text Solution

    |

  7. If the maximum value of cos(cosx) is a and minimum value is b, then

    Text Solution

    |

  8. If (2sinA)/(1+sinA+cosA)=k then (1+sinA-cosA)/(1+sinA)=

    Text Solution

    |

  9. If sinx+sin^2x=1," then the value of "cos^12x+3cos^10x+3cos^8x+cos^6x-...

    Text Solution

    |

  10. If sum(r=15)^29(cos(rpi/2+theta)=S1 and sum(r=15)^29(sin(rpi/2+theta)...

    Text Solution

    |

  11. The maximum value of cos^(2)(cos(33pi + theta))+sin^(2)(sin(45pi+theta...

    Text Solution

    |

  12. If (sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5, then

    Text Solution

    |

  13. If asin^2theta+bcos^2theta=m, bsin^2phi+acos^2phi=n, atantheta=btanphi...

    Text Solution

    |

  14. The value of tan((5pi)/12)-tan(pi/12) is

    Text Solution

    |

  15. If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)...

    Text Solution

    |

  16. If tanalpha=(sqrt(3)+1)/(sqrt(3)-1), then the expression cos 2alpha +(...

    Text Solution

    |

  17. If 0 lt theta(2) lt theta(1) lt pi/4, cos (theta(1) + theta(2)) = 3/5 ...

    Text Solution

    |

  18. If sintheta=1/2, cosphi=1/3 then theta+phi belongs to, where 0<theta ,...

    Text Solution

    |

  19. The range of f(theta)=3cos^2theta-8sqrt(3) cos theta sin theta + 5 sin...

    Text Solution

    |

  20. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |