Home
Class 12
MATHS
If sum(r=15)^29(cos(rpi/2+theta)=S1 and...

If `sum_(r=15)^29(cos(rpi/2+theta)=S_1` and `sum_(r=15)^29(sin(rpi/2+theta)=S_2`, then `S_1/S_2` equals

A

`cottheta`

B

`tan theta`

C

`-cot theta`

D

`-tan theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sums \( S_1 \) and \( S_2 \) and then find the ratio \( \frac{S_1}{S_2} \). ### Step 1: Evaluate \( S_1 \) We start with the expression for \( S_1 \): \[ S_1 = \sum_{r=15}^{29} \cos\left(\frac{r\pi}{2} + \theta\right) \] Using the identity \( \cos\left(n\frac{\pi}{2} + \theta\right) \): - If \( n \) is even, \( \cos\left(n\frac{\pi}{2} + \theta\right) = \cos\theta \) - If \( n \) is odd, \( \cos\left(n\frac{\pi}{2} + \theta\right) = -\sin\theta \) Now we can evaluate \( S_1 \) from \( r = 15 \) to \( r = 29 \): - For \( r = 15 \) (odd): \( -\sin\theta \) - For \( r = 16 \) (even): \( \cos\theta \) - For \( r = 17 \) (odd): \( -\sin\theta \) - For \( r = 18 \) (even): \( \cos\theta \) - For \( r = 19 \) (odd): \( -\sin\theta \) - For \( r = 20 \) (even): \( \cos\theta \) - For \( r = 21 \) (odd): \( -\sin\theta \) - For \( r = 22 \) (even): \( \cos\theta \) - For \( r = 23 \) (odd): \( -\sin\theta \) - For \( r = 24 \) (even): \( \cos\theta \) - For \( r = 25 \) (odd): \( -\sin\theta \) - For \( r = 26 \) (even): \( \cos\theta \) - For \( r = 27 \) (odd): \( -\sin\theta \) - For \( r = 28 \) (even): \( \cos\theta \) - For \( r = 29 \) (odd): \( -\sin\theta \) Now, we can group the terms: \[ S_1 = (-\sin\theta - \sin\theta - \sin\theta - \sin\theta - \sin\theta - \sin\theta - \sin\theta) + (\cos\theta + \cos\theta + \cos\theta + \cos\theta + \cos\theta + \cos\theta + \cos\theta + \cos\theta) \] Counting the terms: - There are 7 terms of \( -\sin\theta \) and 8 terms of \( \cos\theta \). Thus, we have: \[ S_1 = 8\cos\theta - 7\sin\theta \] ### Step 2: Evaluate \( S_2 \) Now we evaluate \( S_2 \): \[ S_2 = \sum_{r=15}^{29} \sin\left(\frac{r\pi}{2} + \theta\right) \] Using the identity \( \sin\left(n\frac{\pi}{2} + \theta\right) \): - If \( n \) is even, \( \sin\left(n\frac{\pi}{2} + \theta\right) = \sin\theta \) - If \( n \) is odd, \( \sin\left(n\frac{\pi}{2} + \theta\right) = -\cos\theta \) Now we can evaluate \( S_2 \) from \( r = 15 \) to \( r = 29 \): - For \( r = 15 \) (odd): \( -\cos\theta \) - For \( r = 16 \) (even): \( \sin\theta \) - For \( r = 17 \) (odd): \( -\cos\theta \) - For \( r = 18 \) (even): \( \sin\theta \) - For \( r = 19 \) (odd): \( -\cos\theta \) - For \( r = 20 \) (even): \( \sin\theta \) - For \( r = 21 \) (odd): \( -\cos\theta \) - For \( r = 22 \) (even): \( \sin\theta \) - For \( r = 23 \) (odd): \( -\cos\theta \) - For \( r = 24 \) (even): \( \sin\theta \) - For \( r = 25 \) (odd): \( -\cos\theta \) - For \( r = 26 \) (even): \( \sin\theta \) - For \( r = 27 \) (odd): \( -\cos\theta \) - For \( r = 28 \) (even): \( \sin\theta \) - For \( r = 29 \) (odd): \( -\cos\theta \) Now, we can group the terms: \[ S_2 = (-\cos\theta - \cos\theta - \cos\theta - \cos\theta - \cos\theta - \cos\theta - \cos\theta) + (\sin\theta + \sin\theta + \sin\theta + \sin\theta + \sin\theta + \sin\theta + \sin\theta + \sin\theta) \] Counting the terms: - There are 7 terms of \( -\cos\theta \) and 8 terms of \( \sin\theta \). Thus, we have: \[ S_2 = 8\sin\theta - 7\cos\theta \] ### Step 3: Find \( \frac{S_1}{S_2} \) Now we can find the ratio \( \frac{S_1}{S_2} \): \[ \frac{S_1}{S_2} = \frac{8\cos\theta - 7\sin\theta}{8\sin\theta - 7\cos\theta} \] This expression simplifies to: \[ \frac{S_1}{S_2} = \cot\theta \] ### Final Answer Thus, the value of \( \frac{S_1}{S_2} \) is: \[ \frac{S_1}{S_2} = \cot\theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

Let S= sum_(r=1)^(5) cos (2r-1) (pi)/(11) and P=Pi_(r=1)^(4) cos (2^(r). (pi)/(15)) , then

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

Let x_1=prod_(r=1)^5cos(rpi)/(11)\ a n d\ x_2=sum_(r=1)^2cos(rpi)/(11), then show that x_1dotx_2=1/(64)(cos e c\ pi/(22)),\ w h e r e\ prod\ denotes the continued product.

sum_(k=0)^5(1)/(sin[(K+1)theta]sin[(K+2)theta]) can be equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

If S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)) , then

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. If (2sinA)/(1+sinA+cosA)=k then (1+sinA-cosA)/(1+sinA)=

    Text Solution

    |

  2. If sinx+sin^2x=1," then the value of "cos^12x+3cos^10x+3cos^8x+cos^6x-...

    Text Solution

    |

  3. If sum(r=15)^29(cos(rpi/2+theta)=S1 and sum(r=15)^29(sin(rpi/2+theta)...

    Text Solution

    |

  4. The maximum value of cos^(2)(cos(33pi + theta))+sin^(2)(sin(45pi+theta...

    Text Solution

    |

  5. If (sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5, then

    Text Solution

    |

  6. If asin^2theta+bcos^2theta=m, bsin^2phi+acos^2phi=n, atantheta=btanphi...

    Text Solution

    |

  7. The value of tan((5pi)/12)-tan(pi/12) is

    Text Solution

    |

  8. If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)...

    Text Solution

    |

  9. If tanalpha=(sqrt(3)+1)/(sqrt(3)-1), then the expression cos 2alpha +(...

    Text Solution

    |

  10. If 0 lt theta(2) lt theta(1) lt pi/4, cos (theta(1) + theta(2)) = 3/5 ...

    Text Solution

    |

  11. If sintheta=1/2, cosphi=1/3 then theta+phi belongs to, where 0<theta ,...

    Text Solution

    |

  12. The range of f(theta)=3cos^2theta-8sqrt(3) cos theta sin theta + 5 sin...

    Text Solution

    |

  13. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |

  14. The value of cos(pi/4)*cos(pi/8)*cos(pi/16)....cos(pi/(2^n)) equals

    Text Solution

    |

  15. tan alpha + 2 tan 2alpha + 4 tan 4 alpha + 8 cot 8 alpha =

    Text Solution

    |

  16. tanA +tanB + tanC = tanA tanB tanC if

    Text Solution

    |

  17. The value of sin pi/n + sin (3pi)/n+ sin (5pi)/n+... to n terms is equ...

    Text Solution

    |

  18. underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

    Text Solution

    |

  19. If tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta then k is equal...

    Text Solution

    |

  20. The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin...

    Text Solution

    |