Home
Class 12
MATHS
The value of tan((5pi)/12)-tan(pi/12) is...

The value of `tan((5pi)/12)-tan(pi/12)` is

A

`sqrt(3)`

B

`2sqrt(3)`

C

`sqrt(3)/2`

D

`-sqrt(3)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan\left(\frac{5\pi}{12}\right) - \tan\left(\frac{\pi}{12}\right) \), we can follow these steps: ### Step 1: Rewrite \( \tan\left(\frac{5\pi}{12}\right) \) Using the identity \( \tan\left(\theta\right) = \cot\left(\frac{\pi}{2} - \theta\right) \), we can express \( \tan\left(\frac{5\pi}{12}\right) \) as: \[ \tan\left(\frac{5\pi}{12}\right) = \cot\left(\frac{\pi}{2} - \frac{5\pi}{12}\right) = \cot\left(\frac{6\pi}{12} - \frac{5\pi}{12}\right) = \cot\left(\frac{\pi}{12}\right) \] ### Step 2: Substitute into the expression Now we can substitute this back into our original expression: \[ \tan\left(\frac{5\pi}{12}\right) - \tan\left(\frac{\pi}{12}\right) = \cot\left(\frac{\pi}{12}\right) - \tan\left(\frac{\pi}{12}\right) \] ### Step 3: Rewrite \( \cot\left(\frac{\pi}{12}\right) \) and \( \tan\left(\frac{\pi}{12}\right) \) We know that: \[ \cot\left(\frac{\pi}{12}\right) = \frac{\cos\left(\frac{\pi}{12}\right)}{\sin\left(\frac{\pi}{12}\right)} \quad \text{and} \quad \tan\left(\frac{\pi}{12}\right) = \frac{\sin\left(\frac{\pi}{12}\right)}{\cos\left(\frac{\pi}{12}\right)} \] ### Step 4: Combine the fractions Now we can combine these fractions: \[ \cot\left(\frac{\pi}{12}\right) - \tan\left(\frac{\pi}{12}\right) = \frac{\cos\left(\frac{\pi}{12}\right)}{\sin\left(\frac{\pi}{12}\right)} - \frac{\sin\left(\frac{\pi}{12}\right)}{\cos\left(\frac{\pi}{12}\right)} \] Finding a common denominator gives us: \[ = \frac{\cos^2\left(\frac{\pi}{12}\right) - \sin^2\left(\frac{\pi}{12}\right)}{\sin\left(\frac{\pi}{12}\right) \cos\left(\frac{\pi}{12}\right)} \] ### Step 5: Use double angle identities Using the double angle identities: \[ \cos^2\theta - \sin^2\theta = \cos(2\theta) \quad \text{and} \quad \sin(2\theta) = 2\sin\theta\cos\theta \] we can rewrite the expression as: \[ = \frac{\cos\left(\frac{\pi}{6}\right)}{\frac{1}{2}\sin\left(\frac{\pi}{6}\right)} = \frac{2\cos\left(\frac{\pi}{6}\right)}{\sin\left(\frac{\pi}{6}\right)} \] ### Step 6: Substitute known values We know: \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \quad \text{and} \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Substituting these values gives: \[ = \frac{2 \cdot \frac{\sqrt{3}}{2}}{\frac{1}{2}} = \frac{\sqrt{3}}{\frac{1}{2}} = 2\sqrt{3} \] ### Final Answer Thus, the value of \( \tan\left(\frac{5\pi}{12}\right) - \tan\left(\frac{\pi}{12}\right) \) is: \[ \boxed{2\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

tan((11pi)/12)

The value of tan (17 pi)/(4)

The value of tan(-(15pi)/(4)) is

The value of tan(pi+x)tan(pi-x)cot^(2)x is

Find the value of 2cos((5pi)/12) cos(pi/12) and 2sin((5pi)/12)cos(pi/12)

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

Find the value of tan (13pi)/(12) .

The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+(1+tan\ (7pi)/8*tan\ (5pi)/8)+(1+tan\ (9pi)/8* tan\ (7pi)/8)

Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. If (sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5, then

    Text Solution

    |

  2. If asin^2theta+bcos^2theta=m, bsin^2phi+acos^2phi=n, atantheta=btanphi...

    Text Solution

    |

  3. The value of tan((5pi)/12)-tan(pi/12) is

    Text Solution

    |

  4. If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)...

    Text Solution

    |

  5. If tanalpha=(sqrt(3)+1)/(sqrt(3)-1), then the expression cos 2alpha +(...

    Text Solution

    |

  6. If 0 lt theta(2) lt theta(1) lt pi/4, cos (theta(1) + theta(2)) = 3/5 ...

    Text Solution

    |

  7. If sintheta=1/2, cosphi=1/3 then theta+phi belongs to, where 0<theta ,...

    Text Solution

    |

  8. The range of f(theta)=3cos^2theta-8sqrt(3) cos theta sin theta + 5 sin...

    Text Solution

    |

  9. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |

  10. The value of cos(pi/4)*cos(pi/8)*cos(pi/16)....cos(pi/(2^n)) equals

    Text Solution

    |

  11. tan alpha + 2 tan 2alpha + 4 tan 4 alpha + 8 cot 8 alpha =

    Text Solution

    |

  12. tanA +tanB + tanC = tanA tanB tanC if

    Text Solution

    |

  13. The value of sin pi/n + sin (3pi)/n+ sin (5pi)/n+... to n terms is equ...

    Text Solution

    |

  14. underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

    Text Solution

    |

  15. If tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta then k is equal...

    Text Solution

    |

  16. The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin...

    Text Solution

    |

  17. In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of...

    Text Solution

    |

  18. let a=cosA+cosB-cos(A+B) and b=4sin(A/2)sin(B/2)cos((A+B)/2) Then a-b ...

    Text Solution

    |

  19. The value of tan^6(15^@)-15tan^4(15^@)+15tan^2(15^@)-3 is

    Text Solution

    |

  20. If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sin...

    Text Solution

    |