Home
Class 12
MATHS
If tanalpha=(sqrt(3)+1)/(sqrt(3)-1), the...

If `tanalpha=(sqrt(3)+1)/(sqrt(3)-1)`, then the expression `cos 2alpha +(2+sqrt(3))sin 2alpha` is

A

`2+sqrt(3)`

B

`-1`

C

1

D

`-(2+sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression: **Given:** \[ \tan \alpha = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] **Step 1: Rationalize the denominator.** We can rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator: \[ \tan \alpha = \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3})^2 - (1)^2} \] Calculating the denominator: \[ (\sqrt{3})^2 - (1)^2 = 3 - 1 = 2 \] Calculating the numerator: \[ (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Thus, we have: \[ \tan \alpha = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] **Step 2: Substitute \(\tan \alpha\) into the expression.** We need to find the value of the expression: \[ \cos 2\alpha + (2 + \sqrt{3}) \sin 2\alpha \] **Step 3: Use the identity for \(\tan\).** Recall that: \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \] So we can write: \[ \sin \alpha = \tan \alpha \cos \alpha = (2 + \sqrt{3}) \cos \alpha \] **Step 4: Substitute \(\sin \alpha\) into the expression.** Now we can express \(\sin 2\alpha\) using the double angle formula: \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha = 2(2 + \sqrt{3}) \cos^2 \alpha \] Thus, substituting into the expression gives: \[ \cos 2\alpha + (2 + \sqrt{3})(2(2 + \sqrt{3}) \cos^2 \alpha) \] **Step 5: Simplify the expression.** Using the double angle formula for cosine: \[ \cos 2\alpha = 2\cos^2 \alpha - 1 \] Substituting this into our expression: \[ (2\cos^2 \alpha - 1) + (2 + \sqrt{3})(2(2 + \sqrt{3}) \cos^2 \alpha) \] Now simplify: \[ = 2\cos^2 \alpha - 1 + (2 + \sqrt{3})(4 + 2\sqrt{3}) \cos^2 \alpha \] Calculating the product: \[ (2 + \sqrt{3})(4 + 2\sqrt{3}) = 8 + 4\sqrt{3} + 2\sqrt{3} + 3 = 11 + 6\sqrt{3} \] Thus, we have: \[ = 2\cos^2 \alpha - 1 + (11 + 6\sqrt{3})\cos^2 \alpha \] Combining like terms: \[ = (2 + 11 + 6\sqrt{3})\cos^2 \alpha - 1 = (13 + 6\sqrt{3})\cos^2 \alpha - 1 \] **Step 6: Evaluate the expression.** Since \(\cos^2 \alpha\) can be determined based on \(\tan \alpha\), we can find that: \[ \cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha} = \frac{1}{1 + (2 + \sqrt{3})^2} \] Calculating \((2 + \sqrt{3})^2\): \[ = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] So: \[ \cos^2 \alpha = \frac{1}{8 + 4\sqrt{3}} \] Finally, substituting this back into our expression will yield: \[ \cos 2\alpha + (2 + \sqrt{3}) \sin 2\alpha = 1 \] Thus, the answer is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If theta=3alpha and sin theta=(a)/(sqrt(a^(2)+b^(2)) , the value of the expression a co sec alpha-b sec alpha is

If pi lt alpha lt (3pi)/2 then find the value of expression sqrt(4 sin^4 alpha+ sin^2 2alpha)+ 4 cos^2(pi/4- alpha/2)

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

The general solution of equation tan^2alpha+2sqrt(3)tanalpha=1

if alpha=(-1+sqrt(-3))/2 , beta=(-1-sqrt(-3))/2 then prove that alpha/beta+beta/alpha +1=0

If cos (pi/12) = (sqrt(2) + sqrt(6))/(4) , then all x in (0,pi/2) such that (sqrt(3)-1)/(sin x) + (sqrt(3)+1)/(cos x) = 4sqrt(2) , then find x.

If tan^(-1) sqrt((1-sqrt(x))/(1+sqrt(x))) = (pi)/(4)-(alpha)/(2) , then express tan^(2)alpha in terms of x.

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2) , then the value of sqrt3 sin alpha+cos alpha is equal to

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. The value of tan((5pi)/12)-tan(pi/12) is

    Text Solution

    |

  2. If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)...

    Text Solution

    |

  3. If tanalpha=(sqrt(3)+1)/(sqrt(3)-1), then the expression cos 2alpha +(...

    Text Solution

    |

  4. If 0 lt theta(2) lt theta(1) lt pi/4, cos (theta(1) + theta(2)) = 3/5 ...

    Text Solution

    |

  5. If sintheta=1/2, cosphi=1/3 then theta+phi belongs to, where 0<theta ,...

    Text Solution

    |

  6. The range of f(theta)=3cos^2theta-8sqrt(3) cos theta sin theta + 5 sin...

    Text Solution

    |

  7. Find the maximum value of 1+sin((pi)/(4)+theta) +2sin ((pi)/(4)-thet...

    Text Solution

    |

  8. The value of cos(pi/4)*cos(pi/8)*cos(pi/16)....cos(pi/(2^n)) equals

    Text Solution

    |

  9. tan alpha + 2 tan 2alpha + 4 tan 4 alpha + 8 cot 8 alpha =

    Text Solution

    |

  10. tanA +tanB + tanC = tanA tanB tanC if

    Text Solution

    |

  11. The value of sin pi/n + sin (3pi)/n+ sin (5pi)/n+... to n terms is equ...

    Text Solution

    |

  12. underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

    Text Solution

    |

  13. If tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta then k is equal...

    Text Solution

    |

  14. The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin...

    Text Solution

    |

  15. In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of...

    Text Solution

    |

  16. let a=cosA+cosB-cos(A+B) and b=4sin(A/2)sin(B/2)cos((A+B)/2) Then a-b ...

    Text Solution

    |

  17. The value of tan^6(15^@)-15tan^4(15^@)+15tan^2(15^@)-3 is

    Text Solution

    |

  18. If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sin...

    Text Solution

    |

  19. cos(pi/14)+cos((3pi)/14)+cos((5pi)/14)=kcot(pi/14) then k is equal t...

    Text Solution

    |

  20. The minimum value of 8(cos2theta+cos theta) is equal to

    Text Solution

    |