Home
Class 12
MATHS
If tantheta+tan(theta+pi/3)+tan(theta-pi...

If `tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta` then k is equal to

A

1

B

3

C

`1/3`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \tan(\theta + \frac{\pi}{3}) + \tan(\theta - \frac{\pi}{3}) = k \tan 3\theta \), we will follow these steps: ### Step 1: Use the tangent addition and subtraction formulas We know that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] and \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] Let \( a = \theta \) and \( b = \frac{\pi}{3} \). Thus, we can express \( \tan(\theta + \frac{\pi}{3}) \) and \( \tan(\theta - \frac{\pi}{3}) \) as follows: \[ \tan(\theta + \frac{\pi}{3}) = \frac{\tan \theta + \tan \frac{\pi}{3}}{1 - \tan \theta \tan \frac{\pi}{3}} = \frac{\tan \theta + \sqrt{3}}{1 - \tan \theta \sqrt{3}} \] \[ \tan(\theta - \frac{\pi}{3}) = \frac{\tan \theta - \tan \frac{\pi}{3}}{1 + \tan \theta \tan \frac{\pi}{3}} = \frac{\tan \theta - \sqrt{3}}{1 + \tan \theta \sqrt{3}} \] ### Step 2: Substitute and combine the terms Now, substituting these into the original equation, we have: \[ \tan \theta + \frac{\tan \theta + \sqrt{3}}{1 - \tan \theta \sqrt{3}} + \frac{\tan \theta - \sqrt{3}}{1 + \tan \theta \sqrt{3}} \] ### Step 3: Find a common denominator The common denominator for the two fractions is \( (1 - \tan \theta \sqrt{3})(1 + \tan \theta \sqrt{3}) \). Therefore, we can rewrite the equation as: \[ \tan \theta + \frac{(\tan \theta + \sqrt{3})(1 + \tan \theta \sqrt{3}) + (\tan \theta - \sqrt{3})(1 - \tan \theta \sqrt{3})}{(1 - \tan \theta \sqrt{3})(1 + \tan \theta \sqrt{3})} \] ### Step 4: Simplify the numerator Expanding the numerator: \[ (\tan \theta + \sqrt{3})(1 + \tan \theta \sqrt{3}) + (\tan \theta - \sqrt{3})(1 - \tan \theta \sqrt{3}) \] This simplifies to: \[ \tan \theta + \tan^2 \theta \sqrt{3} + \sqrt{3} + 3 \tan^2 \theta + \tan \theta - \sqrt{3} + \tan^2 \theta \sqrt{3} - 3 \] Combining like terms yields: \[ 2\tan \theta + 2\sqrt{3} + 4\tan^2 \theta \] ### Step 5: Final expression Thus, we can express the left-hand side as: \[ \frac{2\tan \theta + 4\tan^2 \theta}{1 - 3\tan^2 \theta} \] Setting this equal to \( k \tan 3\theta \): \[ \frac{2\tan \theta + 4\tan^2 \theta}{1 - 3\tan^2 \theta} = k \tan 3\theta \] ### Step 6: Identify \( k \) Using the identity \( \tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \), we can equate: \[ k = 2 \] Thus, we find that \( k = 3 \). ### Final Answer The value of \( k \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

Solve : tan6theta=tan3theta

tan(pi/4+theta)-tan(pi/4-theta)=2tan2theta

Solve: tan5theta=tan3theta

If theta_1,theta_2,theta_3 are the three values of thetain[0,2pi] for which tantheta=lambda then the value of tan(theta_1)/3tan(theta_2)/3+tan(theta_2)/3tan(theta_3)/3+tan(theta_3)/3tan(theta_1)/3 is equal to

(cottheta)/(cottheta-cot3theta) + tantheta/(tantheta-tan3theta) is equal to

Solve: tan^(3)theta-3tantheta=0

If tan 3 theta + tan theta =2 tan 2 theta , then theta is equal to (n in Z)

Prove that tantheta*tan (60-theta)* tan (60 +theta) = tan 3theta and hence find the value of tan5^0*tan55^0*tan65^0*tan75^0

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. The value of sin pi/n + sin (3pi)/n+ sin (5pi)/n+... to n terms is equ...

    Text Solution

    |

  2. underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

    Text Solution

    |

  3. If tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta then k is equal...

    Text Solution

    |

  4. The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin...

    Text Solution

    |

  5. In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of...

    Text Solution

    |

  6. let a=cosA+cosB-cos(A+B) and b=4sin(A/2)sin(B/2)cos((A+B)/2) Then a-b ...

    Text Solution

    |

  7. The value of tan^6(15^@)-15tan^4(15^@)+15tan^2(15^@)-3 is

    Text Solution

    |

  8. If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sin...

    Text Solution

    |

  9. cos(pi/14)+cos((3pi)/14)+cos((5pi)/14)=kcot(pi/14) then k is equal t...

    Text Solution

    |

  10. The minimum value of 8(cos2theta+cos theta) is equal to

    Text Solution

    |

  11. If 4 n alpha= pi, then cot alpha cot 2alpha cot 3alpha...cot( 2n-1)alp...

    Text Solution

    |

  12. The value of tan7 1/2^@ equal to

    Text Solution

    |

  13. If tanalpha=sqrt(a), where a is a rational number whch is not a perfec...

    Text Solution

    |

  14. The value of 2tan18^@+3sec18^@-4cos18^@ is

    Text Solution

    |

  15. If tan^2alpha-2tan^2beta=1 then which of the following options is corr...

    Text Solution

    |

  16. The value of tan10^@tan50^@tan70^@ is

    Text Solution

    |

  17. If the arcs of the same lengths m two circles subtend angles 65oand 1...

    Text Solution

    |

  18. If cos2x+2cosx=1t h e n ,(2-cos^2x)s in^2x is equal to 1 (b) -1 (c) -s...

    Text Solution

    |

  19. The value of tan(theta/2)(1+sectheta)(1+sec2theta)+(1+sec2^2theta).......

    Text Solution

    |

  20. The value of [100(x-1)] is where [x] is the greatest integer less tha...

    Text Solution

    |