Home
Class 12
MATHS
let a=cosA+cosB-cos(A+B) and b=4sin(A/2)...

let `a=cosA+cosB-cos(A+B)` and `b=4sin(A/2)sin(B/2)cos((A+B)/2)` Then a-b is

A

1

B

zero

C

`-1`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a - b \) where: \[ a = \cos A + \cos B - \cos(A + B) \] \[ b = 4 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \cos\left(\frac{A + B}{2}\right) \] ### Step 1: Simplifying \( a \) Using the cosine addition formula, we know that: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Thus, we can rewrite \( a \): \[ a = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) - \cos(A + B) \] Now, we can express \( \cos(A + B) \) using the double angle formula: \[ \cos(A + B) = 2 \cos^2\left(\frac{A + B}{2}\right) - 1 \] Substituting this into the expression for \( a \): \[ a = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) - \left(2 \cos^2\left(\frac{A + B}{2}\right) - 1\right) \] This simplifies to: \[ a = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) - 2 \cos^2\left(\frac{A + B}{2}\right) + 1 \] Rearranging gives: \[ a = 1 + 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) - 2 \cos^2\left(\frac{A + B}{2}\right) \] ### Step 2: Simplifying \( b \) We have: \[ b = 4 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \cos\left(\frac{A + B}{2}\right) \] ### Step 3: Finding \( a - b \) Now we need to find \( a - b \): \[ a - b = \left(1 + 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) - 2 \cos^2\left(\frac{A + B}{2}\right)\right) - 4 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \cos\left(\frac{A + B}{2}\right) \] ### Step 4: Recognizing the relationship Notice that the term \( 4 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \cos\left(\frac{A + B}{2}\right) \) can be rewritten using the product-to-sum identities. However, we can also see that \( a \) can be expressed in terms of \( b \): \[ a = b + 1 \] Thus, we find: \[ a - b = 1 \] ### Final Answer \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If A+B-C=3pi,\ t h e n\ sin A+ sin B-sin C is equal to- a. 4sin(A/2)sin(B/2)cos(C/2) b. -4sin(A/2)sin(B/2)cos(C/2) c. \ 4cos(A/2)cos(B/2)cos(C/2) d. -4cos(A/2)cos(B/2)cos(C/2)

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

Prove that: (cosA+cosB)^2+(sinA-sinB)^2=4cos^2((A+B)/2) .

Prove that: (cosA+cosB)^(2)+(sinA+sinB)^(2)=4cos^(2)(A-B)/2

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

Show that : cos A+ cosB + cosC+ cos(A+B+C) = 4cos""(B+C)/(2)cos""(C+A)/(2)cos""(A+B)/(2) .

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin...

    Text Solution

    |

  2. In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of...

    Text Solution

    |

  3. let a=cosA+cosB-cos(A+B) and b=4sin(A/2)sin(B/2)cos((A+B)/2) Then a-b ...

    Text Solution

    |

  4. The value of tan^6(15^@)-15tan^4(15^@)+15tan^2(15^@)-3 is

    Text Solution

    |

  5. If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sin...

    Text Solution

    |

  6. cos(pi/14)+cos((3pi)/14)+cos((5pi)/14)=kcot(pi/14) then k is equal t...

    Text Solution

    |

  7. The minimum value of 8(cos2theta+cos theta) is equal to

    Text Solution

    |

  8. If 4 n alpha= pi, then cot alpha cot 2alpha cot 3alpha...cot( 2n-1)alp...

    Text Solution

    |

  9. The value of tan7 1/2^@ equal to

    Text Solution

    |

  10. If tanalpha=sqrt(a), where a is a rational number whch is not a perfec...

    Text Solution

    |

  11. The value of 2tan18^@+3sec18^@-4cos18^@ is

    Text Solution

    |

  12. If tan^2alpha-2tan^2beta=1 then which of the following options is corr...

    Text Solution

    |

  13. The value of tan10^@tan50^@tan70^@ is

    Text Solution

    |

  14. If the arcs of the same lengths m two circles subtend angles 65oand 1...

    Text Solution

    |

  15. If cos2x+2cosx=1t h e n ,(2-cos^2x)s in^2x is equal to 1 (b) -1 (c) -s...

    Text Solution

    |

  16. The value of tan(theta/2)(1+sectheta)(1+sec2theta)+(1+sec2^2theta).......

    Text Solution

    |

  17. The value of [100(x-1)] is where [x] is the greatest integer less tha...

    Text Solution

    |

  18. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  19. If f(alpha,beta)=cos^2alpha+sin^2alphacos2beta then which of the follo...

    Text Solution

    |

  20. Let f(x)=cos10x+cos8x+3cos4x+3cos2x and g(x)=8cosxcos^3(3x) then for a...

    Text Solution

    |