Home
Class 12
MATHS
cos(pi/14)+cos((3pi)/14)+cos((5pi)/14)=k...

`cos(pi/14)+cos((3pi)/14)+cos((5pi)/14)=kcot(pi/14)` then `k` is equal to

A

`1`

B

`1/2`

C

`2`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos\left(\frac{\pi}{14}\right) + \cos\left(\frac{3\pi}{14}\right) + \cos\left(\frac{5\pi}{14}\right) = k \cot\left(\frac{\pi}{14}\right) \), we will follow these steps: ### Step 1: Write the expression We start with the left-hand side: \[ \cos\left(\frac{\pi}{14}\right) + \cos\left(\frac{3\pi}{14}\right) + \cos\left(\frac{5\pi}{14}\right) \] ### Step 2: Multiply and divide by \( 2 \sin\left(\frac{\pi}{14}\right) \) To convert the expression into a form involving cotangent, we multiply and divide by \( 2 \sin\left(\frac{\pi}{14}\right) \): \[ = \frac{2 \sin\left(\frac{\pi}{14}\right) \left(\cos\left(\frac{\pi}{14}\right) + \cos\left(\frac{3\pi}{14}\right) + \cos\left(\frac{5\pi}{14}\right)\right)}{2 \sin\left(\frac{\pi}{14}\right)} \] ### Step 3: Use the identity \( 2 \sin A \cos B = \sin(2A) \) Now, we can use the identity \( 2 \sin A \cos B = \sin(2A) \): \[ = \frac{1}{2 \sin\left(\frac{\pi}{14}\right)} \left( \sin\left(\frac{2\pi}{14}\right) + \sin\left(\frac{4\pi}{14}\right) + \sin\left(\frac{6\pi}{14}\right) \right) \] This simplifies to: \[ = \frac{1}{2 \sin\left(\frac{\pi}{14}\right)} \left( \sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{3\pi}{7}\right) \right) \] ### Step 4: Use the sum of sines identity We know from trigonometric identities that: \[ \sin A + \sin B + \sin C = 4 \sin\left(\frac{A+B+C}{2}\right) \sin\left(\frac{A-B}{2}\right) \sin\left(\frac{B-C}{2}\right) \] Applying this to our angles: \[ \sin\left(\frac{\pi}{7}\right) + \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{3\pi}{7}\right) = 4 \sin\left(\frac{6\pi}{21}\right) \sin\left(\frac{-\pi/7}{2}\right) \sin\left(\frac{-\pi/7}{2}\right) \] This results in: \[ = 4 \sin\left(\frac{2\pi}{7}\right) \sin\left(\frac{\pi}{14}\right) \] ### Step 5: Substitute back into the expression Substituting back, we have: \[ = \frac{1}{2 \sin\left(\frac{\pi}{14}\right)} \cdot 4 \sin\left(\frac{2\pi}{7}\right) \sin\left(\frac{\pi}{14}\right) \] This simplifies to: \[ = 2 \sin\left(\frac{2\pi}{7}\right) \] ### Step 6: Relate to cotangent Now, we know that: \[ \sin\left(\frac{2\pi}{7}\right) = \cot\left(\frac{\pi}{14}\right) \] Thus, we can express: \[ 2 \sin\left(\frac{2\pi}{7}\right) = k \cot\left(\frac{\pi}{14}\right) \] ### Step 7: Compare coefficients From the equation, we can see that: \[ k = 1 \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

"cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)=k

cos(pi/11) cos((2pi)/11) cos((3pi)/11)....cos((11pi)/11)=

2cos(pi/13)cos(9pi/13)+cos(3pi/13)+cos(5pi/13)=0

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

Solve cos^6(pi/16)+cos^6((3pi)/16)+cos^6((5pi)/16)+cos^6((7pi)/16)

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

5. if the expression cos^2(pi/11)+cos^2((2pi)/11)+cos^2((3pi)/11)+cos^2((4pi)/11)+cos^2((5pi)/11) has the value equal to p/q in it lowest from ; then find (p+q)

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. The value of tan^6(15^@)-15tan^4(15^@)+15tan^2(15^@)-3 is

    Text Solution

    |

  2. If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sin...

    Text Solution

    |

  3. cos(pi/14)+cos((3pi)/14)+cos((5pi)/14)=kcot(pi/14) then k is equal t...

    Text Solution

    |

  4. The minimum value of 8(cos2theta+cos theta) is equal to

    Text Solution

    |

  5. If 4 n alpha= pi, then cot alpha cot 2alpha cot 3alpha...cot( 2n-1)alp...

    Text Solution

    |

  6. The value of tan7 1/2^@ equal to

    Text Solution

    |

  7. If tanalpha=sqrt(a), where a is a rational number whch is not a perfec...

    Text Solution

    |

  8. The value of 2tan18^@+3sec18^@-4cos18^@ is

    Text Solution

    |

  9. If tan^2alpha-2tan^2beta=1 then which of the following options is corr...

    Text Solution

    |

  10. The value of tan10^@tan50^@tan70^@ is

    Text Solution

    |

  11. If the arcs of the same lengths m two circles subtend angles 65oand 1...

    Text Solution

    |

  12. If cos2x+2cosx=1t h e n ,(2-cos^2x)s in^2x is equal to 1 (b) -1 (c) -s...

    Text Solution

    |

  13. The value of tan(theta/2)(1+sectheta)(1+sec2theta)+(1+sec2^2theta).......

    Text Solution

    |

  14. The value of [100(x-1)] is where [x] is the greatest integer less tha...

    Text Solution

    |

  15. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  16. If f(alpha,beta)=cos^2alpha+sin^2alphacos2beta then which of the follo...

    Text Solution

    |

  17. Let f(x)=cos10x+cos8x+3cos4x+3cos2x and g(x)=8cosxcos^3(3x) then for a...

    Text Solution

    |

  18. Prove that sum(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sin...

    Text Solution

    |

  19. Find the square root of 5-12i

    Text Solution

    |

  20. Given that sum(k=1)^35 sin5k^@ = tan(m/n)^@ , where m and n are relat...

    Text Solution

    |