Home
Class 12
MATHS
The value of tan7 1/2^@ equal to...

The value of `tan7 1/2^@` equal to

A

`(sqrt(3)-sqrt(2))/(sqrt(2)+1)`

B

`(sqrt(3)-sqrt(2))/(sqrt(2)-1)`

C

`(sqrt(3)+sqrt(2))/(sqrt(2)+1)`

D

`(sqrt(3)+sqrt(2))/(sqrt(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 7.5^\circ \), we can use the half-angle formula for tangent, which states: \[ \tan \left( \frac{x}{2} \right) = \frac{1 - \cos x}{\sin x} \] In this case, we will use \( x = 15^\circ \) since \( 7.5^\circ = \frac{15^\circ}{2} \). ### Step 1: Calculate \( \cos 15^\circ \) and \( \sin 15^\circ \) Using the angle subtraction formulas: \[ \sin 15^\circ = \sin(45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ \] Substituting the values: \[ \sin 15^\circ = \left( \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} \right) - \left( \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \right) = \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} - 1}{2\sqrt{2}} \] Now for \( \cos 15^\circ \): \[ \cos 15^\circ = \cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ \] Substituting the values: \[ \cos 15^\circ = \left( \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} \right) + \left( \frac{1}{\sqrt{2}} \cdot \frac{1}{2} \right) = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### Step 2: Substitute into the Half-Angle Formula Now we can substitute \( \sin 15^\circ \) and \( \cos 15^\circ \) into the half-angle formula: \[ \tan 7.5^\circ = \frac{1 - \cos 15^\circ}{\sin 15^\circ} \] Substituting the values we found: \[ \tan 7.5^\circ = \frac{1 - \frac{\sqrt{3} + 1}{2\sqrt{2}}}{\frac{\sqrt{3} - 1}{2\sqrt{2}}} \] ### Step 3: Simplify the Expression First, simplify the numerator: \[ 1 - \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{2\sqrt{2}}{2\sqrt{2}} - \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{2\sqrt{2} - (\sqrt{3} + 1)}{2\sqrt{2}} = \frac{2\sqrt{2} - \sqrt{3} - 1}{2\sqrt{2}} \] Now substitute this back into the tangent expression: \[ \tan 7.5^\circ = \frac{\frac{2\sqrt{2} - \sqrt{3} - 1}{2\sqrt{2}}}{\frac{\sqrt{3} - 1}{2\sqrt{2}}} \] This simplifies to: \[ \tan 7.5^\circ = \frac{2\sqrt{2} - \sqrt{3} - 1}{\sqrt{3} - 1} \] ### Step 4: Rationalize the Denominator To rationalize the denominator, multiply the numerator and denominator by \( \sqrt{3} + 1 \): \[ \tan 7.5^\circ = \frac{(2\sqrt{2} - \sqrt{3} - 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{(2\sqrt{2} - \sqrt{3} - 1)(\sqrt{3} + 1)}{3 - 1} = \frac{(2\sqrt{2} - \sqrt{3} - 1)(\sqrt{3} + 1)}{2} \] ### Final Expression After simplifying the numerator, we can find the final value of \( \tan 7.5^\circ \). ### Summary of Steps 1. Use angle subtraction formulas to find \( \sin 15^\circ \) and \( \cos 15^\circ \). 2. Substitute these values into the half-angle formula for tangent. 3. Simplify the expression. 4. Rationalize the denominator if necessary.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

The value of tan840^(@) is equal to

If sinx +cosx=(sqrt7)/(2) , where x in [0, (pi)/(4)], then the value of tan.(x)/(2) is equal to

In a DeltaABC, sides a,b,c are inAP and (2)/(1!9!)+(2)/(3!7!)+(1)/(5!5!)=(8^(a))/((2b)!), then the maximum value of tan A tan B is equal to

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

6. If tan^(−1)(1−x),tan^(−1)(x) and tan^(−1)(1+x) are in A.P., then the value of x^3+x^2 is equal to

The value of tan 9^@ + tan 36^@ + tan 9^@. tan 36^@ is equal to

The value of tan 20^(@) tan 40^(@) tan 80^(@) is equal to

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

The value of (tan7 0^0-tan2 0^0)/(tan5 0^0)=

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. The minimum value of 8(cos2theta+cos theta) is equal to

    Text Solution

    |

  2. If 4 n alpha= pi, then cot alpha cot 2alpha cot 3alpha...cot( 2n-1)alp...

    Text Solution

    |

  3. The value of tan7 1/2^@ equal to

    Text Solution

    |

  4. If tanalpha=sqrt(a), where a is a rational number whch is not a perfec...

    Text Solution

    |

  5. The value of 2tan18^@+3sec18^@-4cos18^@ is

    Text Solution

    |

  6. If tan^2alpha-2tan^2beta=1 then which of the following options is corr...

    Text Solution

    |

  7. The value of tan10^@tan50^@tan70^@ is

    Text Solution

    |

  8. If the arcs of the same lengths m two circles subtend angles 65oand 1...

    Text Solution

    |

  9. If cos2x+2cosx=1t h e n ,(2-cos^2x)s in^2x is equal to 1 (b) -1 (c) -s...

    Text Solution

    |

  10. The value of tan(theta/2)(1+sectheta)(1+sec2theta)+(1+sec2^2theta).......

    Text Solution

    |

  11. The value of [100(x-1)] is where [x] is the greatest integer less tha...

    Text Solution

    |

  12. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  13. If f(alpha,beta)=cos^2alpha+sin^2alphacos2beta then which of the follo...

    Text Solution

    |

  14. Let f(x)=cos10x+cos8x+3cos4x+3cos2x and g(x)=8cosxcos^3(3x) then for a...

    Text Solution

    |

  15. Prove that sum(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sin...

    Text Solution

    |

  16. Find the square root of 5-12i

    Text Solution

    |

  17. Given that sum(k=1)^35 sin5k^@ = tan(m/n)^@ , where m and n are relat...

    Text Solution

    |

  18. For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2...

    Text Solution

    |

  19. If A + B + C = pi and sin(A +C/2)= ksin(C/2) , then tan(A/2).tan(B/2)...

    Text Solution

    |

  20. If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to

    Text Solution

    |