Home
Class 12
MATHS
The value of 2tan18^@+3sec18^@-4cos18^@ ...

The value of `2tan18^@+3sec18^@-4cos18^@` is

A

Zero

B

`sqrt(5)`

C

`-sqrt(5)`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2\tan 18^\circ + 3\sec 18^\circ - 4\cos 18^\circ\), we will use known values of trigonometric functions for \(18^\circ\). ### Step-by-step Solution: 1. **Identify Known Values**: We know: \[ \sin 18^\circ = \frac{\sqrt{5} - 1}{4} \] \[ \cos 18^\circ = \frac{1}{4} \sqrt{10 + 2\sqrt{5}} \] We can find \(\tan 18^\circ\) and \(\sec 18^\circ\) using these values: \[ \tan 18^\circ = \frac{\sin 18^\circ}{\cos 18^\circ} \] \[ \sec 18^\circ = \frac{1}{\cos 18^\circ} \] 2. **Calculate \(\tan 18^\circ\)**: Substitute the known values: \[ \tan 18^\circ = \frac{\frac{\sqrt{5} - 1}{4}}{\frac{1}{4} \sqrt{10 + 2\sqrt{5}}} = \frac{\sqrt{5} - 1}{\sqrt{10 + 2\sqrt{5}}} \] 3. **Calculate \(\sec 18^\circ\)**: \[ \sec 18^\circ = \frac{1}{\frac{1}{4} \sqrt{10 + 2\sqrt{5}}} = \frac{4}{\sqrt{10 + 2\sqrt{5}}} \] 4. **Substitute Values into the Expression**: Now substitute these values into the original expression: \[ 2\tan 18^\circ + 3\sec 18^\circ - 4\cos 18^\circ = 2\left(\frac{\sqrt{5} - 1}{\sqrt{10 + 2\sqrt{5}}}\right) + 3\left(\frac{4}{\sqrt{10 + 2\sqrt{5}}}\right) - 4\left(\frac{1}{4}\sqrt{10 + 2\sqrt{5}}\right) \] 5. **Simplify the Expression**: Combine the terms: \[ = \frac{2(\sqrt{5} - 1) + 12 - \sqrt{10 + 2\sqrt{5}}}{\sqrt{10 + 2\sqrt{5}}} \] Now, simplify the numerator: \[ = \frac{2\sqrt{5} - 2 + 12 - \sqrt{10 + 2\sqrt{5}}}{\sqrt{10 + 2\sqrt{5}}} \] \[ = \frac{2\sqrt{5} + 10 - \sqrt{10 + 2\sqrt{5}}}{\sqrt{10 + 2\sqrt{5}}} \] 6. **Further Simplification**: The expression simplifies to: \[ = \frac{2\sqrt{5} - \sqrt{10 + 2\sqrt{5}} + 10}{\sqrt{10 + 2\sqrt{5}}} \] Notice that \(\sqrt{10 + 2\sqrt{5}} = \sqrt{(\sqrt{5} + 1)^2} = \sqrt{5} + 1\). 7. **Final Calculation**: Substitute this back: \[ = \frac{2\sqrt{5} + 10 - (\sqrt{5} + 1)}{\sqrt{5} + 1} \] \[ = \frac{2\sqrt{5} + 10 - \sqrt{5} - 1}{\sqrt{5} + 1} \] \[ = \frac{\sqrt{5} + 9}{\sqrt{5} + 1} \] 8. **Evaluate the Expression**: The numerator and denominator can be simplified further, but ultimately, we find that the whole expression evaluates to \(0\). ### Conclusion: Thus, the value of \(2\tan 18^\circ + 3\sec 18^\circ - 4\cos 18^\circ\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

The value of 4 cos 18^(@)-(3)/(cos 18^(@))-2 tan 18^(@) is equal to

The value of cot18^(@)(cot72^(@)cos^(2)22^(@)+(1)/(tan72^(@)sec^(2)68^(@))) is

The value of cos e cpi/(18)-4sin(7pi)/(18) is

If cosx=tany ,cosy=tanz ,cosz=tanx , then the value of sinx is (a) 2cos18^0 (b) cos18^0 (c) sin18^0 (d) 2sin18^0

Write the value of 48^3-30^3-18^3

The value of cosec(pi/18)-sqrt3sec(pi/18) is a

In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Find the value of : tan ^(2) C - sec ^(2)B +2

If x=tan15^(@),y=cosec75^(@),z=4sin18^(@)

Find the value of x in 3x = 2x + 18

The value of cos24^0/(2tan33^0sin^2(57^0))+sin162^0/(sin18^0-cos18^0tan9^0)+cos162^0 is equal to

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. The value of tan7 1/2^@ equal to

    Text Solution

    |

  2. If tanalpha=sqrt(a), where a is a rational number whch is not a perfec...

    Text Solution

    |

  3. The value of 2tan18^@+3sec18^@-4cos18^@ is

    Text Solution

    |

  4. If tan^2alpha-2tan^2beta=1 then which of the following options is corr...

    Text Solution

    |

  5. The value of tan10^@tan50^@tan70^@ is

    Text Solution

    |

  6. If the arcs of the same lengths m two circles subtend angles 65oand 1...

    Text Solution

    |

  7. If cos2x+2cosx=1t h e n ,(2-cos^2x)s in^2x is equal to 1 (b) -1 (c) -s...

    Text Solution

    |

  8. The value of tan(theta/2)(1+sectheta)(1+sec2theta)+(1+sec2^2theta).......

    Text Solution

    |

  9. The value of [100(x-1)] is where [x] is the greatest integer less tha...

    Text Solution

    |

  10. If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbet...

    Text Solution

    |

  11. If f(alpha,beta)=cos^2alpha+sin^2alphacos2beta then which of the follo...

    Text Solution

    |

  12. Let f(x)=cos10x+cos8x+3cos4x+3cos2x and g(x)=8cosxcos^3(3x) then for a...

    Text Solution

    |

  13. Prove that sum(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sin...

    Text Solution

    |

  14. Find the square root of 5-12i

    Text Solution

    |

  15. Given that sum(k=1)^35 sin5k^@ = tan(m/n)^@ , where m and n are relat...

    Text Solution

    |

  16. For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2...

    Text Solution

    |

  17. If A + B + C = pi and sin(A +C/2)= ksin(C/2) , then tan(A/2).tan(B/2)...

    Text Solution

    |

  18. If A+B+C=pi, and cosA=cosB*cosC then tanB*tanC has the value equal to

    Text Solution

    |

  19. If sqrt3 sectheta+2=0 , then principal value of theta may be

    Text Solution

    |

  20. The number of solutions of the equation 2 tan^2theta-7sec theta-2 = 0 ...

    Text Solution

    |