Home
Class 12
MATHS
If theta in (0, 2pi) and 2sin^2theta - 5...

If `theta in (0, 2pi)` and `2sin^2theta - 5sintheta + 2 > 0`, then the range of `theta` is

A

`x=2npi + pi/8, n int I`

B

`x=npi + pi/12, n int I`

C

`x=2npi + pi/24, n int l`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2\sin^2\theta - 5\sin\theta + 2 > 0 \), we will follow these steps: ### Step 1: Rewrite the inequality We start with the inequality: \[ 2\sin^2\theta - 5\sin\theta + 2 > 0 \] ### Step 2: Factor the quadratic expression We will factor the quadratic expression \( 2\sin^2\theta - 5\sin\theta + 2 \). To do this, we look for two numbers that multiply to \( 2 \times 2 = 4 \) and add to \( -5 \). The numbers are \( -4 \) and \( -1 \). Thus, we can rewrite the expression as: \[ 2\sin^2\theta - 4\sin\theta - \sin\theta + 2 > 0 \] Now, we can factor by grouping: \[ 2\sin\theta(\sin\theta - 2) - 1(\sin\theta - 2) > 0 \] This gives us: \[ (2\sin\theta - 1)(\sin\theta - 2) > 0 \] ### Step 3: Analyze the factors We need to find the critical points where each factor is zero: 1. \( 2\sin\theta - 1 = 0 \) implies \( \sin\theta = \frac{1}{2} \) 2. \( \sin\theta - 2 = 0 \) implies \( \sin\theta = 2 \) (not possible since sine values range from -1 to 1) The only critical point we need to consider is \( \sin\theta = \frac{1}{2} \). ### Step 4: Determine the angles The angles where \( \sin\theta = \frac{1}{2} \) in the interval \( (0, 2\pi) \) are: \[ \theta = \frac{\pi}{6} \quad \text{and} \quad \theta = \frac{5\pi}{6} \] ### Step 5: Test intervals We will test the intervals determined by the critical point \( \frac{\pi}{6} \) and \( \frac{5\pi}{6} \): 1. Interval \( (0, \frac{\pi}{6}) \) 2. Interval \( (\frac{\pi}{6}, \frac{5\pi}{6}) \) 3. Interval \( (\frac{5\pi}{6}, 2\pi) \) - For \( \theta \in (0, \frac{\pi}{6}) \): Choose \( \theta = 0 \) → \( (2(0) - 1)(0 - 2) = (-1)(-2) > 0 \) (True) - For \( \theta \in (\frac{\pi}{6}, \frac{5\pi}{6}) \): Choose \( \theta = \frac{\pi}{2} \) → \( (2(1) - 1)(1 - 2) = (1)(-1) < 0 \) (False) - For \( \theta \in (\frac{5\pi}{6}, 2\pi) \): Choose \( \theta = \frac{3\pi}{2} \) → \( (2(-1) - 1)(-1 - 2) = (-3)(-3) > 0 \) (True) ### Step 6: Combine the intervals The solution to the inequality \( 2\sin^2\theta - 5\sin\theta + 2 > 0 \) is: \[ \theta \in (0, \frac{\pi}{6}) \cup (\frac{5\pi}{6}, 2\pi) \] ### Final Answer Thus, the range of \( \theta \) is: \[ \theta \in \left(0, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, 2\pi\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If 3tan^(2)theta-2sintheta=0 , then general value of theta is:

The set of values of theta satisfying the inequatioin 2sin^(2)theta-5sintheta+2 gt 0, where o lt theta lt 2pi , is

Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0} , then the sum of the elements of S is .

Find the range of 12sintheta-9sin^2theta

int_0^(pi//2)(theta/sintheta)^2d theta=

If theta in [0,5pi] and r in R such that 2sintheta=r^4-2r^2+3 then the maximum number of values of the pair (r,theta) is.....

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

If 1 + sintheta + sin^2theta + sin^3theta +.. oo = 4 + 2sqrt3, 0 lt theta lt pi, theta != pi/2 then

The range of values of theta in [0, 2pi] for which (1+ cos theta, sin theta) is on interior point of the circle x^(2) +y^(2)=1 , is

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. The number of the solutions of the equation 3sinx + 4cosx-x^2-16 = 0 i...

    Text Solution

    |

  2. Solve sin^(4)x=1+tan^(8)x.

    Text Solution

    |

  3. If theta in (0, 2pi) and 2sin^2theta - 5sintheta + 2 > 0, then the ran...

    Text Solution

    |

  4. if theta int (0,2pi) and 2sin^(2)theta-5sintheta+2 gt 0, then the rang...

    Text Solution

    |

  5. The general solution of the equation tan2theta tan3theta=1 is

    Text Solution

    |

  6. If m, n in N( n&gt; m), then number of solutions of the equation n|sin...

    Text Solution

    |

  7. If sinA = sinBandcosA=cosA=cosB, then which one of the following is c...

    Text Solution

    |

  8. The number of values of x int [-2pi, 2pi] satisfying tanx + cotx = 2" ...

    Text Solution

    |

  9. The solution set of the equation tanax = tanbx

    Text Solution

    |

  10. The general solution of the equation tanx/ (tan2x) + (tan2x)/tanx +2 =...

    Text Solution

    |

  11. The solution of the equation cos^2theta-2costheta=4sintheta-sin2theta ...

    Text Solution

    |

  12. The general solution of sin^2 theta sec theta +sqrt3 tan theta=0 is (n...

    Text Solution

    |

  13. If sinx+cosx=sqrt(y+1/y), y gt 0, x in[0,pi], then find the least valu...

    Text Solution

    |

  14. Find the number of solution(s) of the equation cos (pi sqrt(x)) cos ...

    Text Solution

    |

  15. The number of solutions of sum(r=1)^6 cos(rx)=6 in

    Text Solution

    |

  16. The number of values of x for which sin2x + cos4x = 2 is

    Text Solution

    |

  17. If the equation cosx + 3cos(2Kx) = 4 has exactly one solution, then

    Text Solution

    |

  18. The solution of the inequality log(1//2) sinx gt log(1//2) cosx is

    Text Solution

    |

  19. The values of k for which the equation sin^4 x+cos^4 x+sin2x+k=0 posse...

    Text Solution

    |

  20. If 4 sin^(4) x+ cos^(4) x=1, then x is equal to (n in Z)

    Text Solution

    |