Home
Class 12
MATHS
With usual notations, if in a triangle ...

With usual notations, if in a triangle ABC `(b+c)/(11) = (c+a)/(12) = (a+b)/(13)`, then cos A : cos B : cos C is :

A

`7:19,25`

B

`19:7:25`

C

`12:14:20`

D

`19:25:20`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equations given in the triangle ABC: \[ \frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} \] Let this common ratio be \( k \). Then we can express \( b+c \), \( c+a \), and \( a+b \) in terms of \( k \): 1. \( b + c = 11k \) 2. \( c + a = 12k \) 3. \( a + b = 13k \) Next, we can add all three equations: \[ (b+c) + (c+a) + (a+b) = 11k + 12k + 13k \] This simplifies to: \[ 2a + 2b + 2c = 36k \] Dividing through by 2 gives: \[ a + b + c = 18k \] Now, we can express \( a \), \( b \), and \( c \) in terms of \( k \): From \( b + c = 11k \): \[ a = (a + b + c) - (b + c) = 18k - 11k = 7k \] From \( c + a = 12k \): \[ b = (a + b + c) - (c + a) = 18k - 12k = 6k \] From \( a + b = 13k \): \[ c = (a + b + c) - (a + b) = 18k - 13k = 5k \] Now we have: - \( a = 7k \) - \( b = 6k \) - \( c = 5k \) Next, we will use the cosine rule to find \( \cos A \), \( \cos B \), and \( \cos C \). Using the cosine rule: 1. For \( \cos A \): \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Substituting the values: \[ \cos A = \frac{(6k)^2 + (5k)^2 - (7k)^2}{2 \cdot (6k)(5k)} = \frac{36k^2 + 25k^2 - 49k^2}{60k^2} = \frac{12k^2}{60k^2} = \frac{1}{5} \] 2. For \( \cos B \): \[ \cos B = \frac{c^2 + a^2 - b^2}{2ca} \] Substituting the values: \[ \cos B = \frac{(5k)^2 + (7k)^2 - (6k)^2}{2 \cdot (5k)(7k)} = \frac{25k^2 + 49k^2 - 36k^2}{70k^2} = \frac{38k^2}{70k^2} = \frac{19}{35} \] 3. For \( \cos C \): \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Substituting the values: \[ \cos C = \frac{(7k)^2 + (6k)^2 - (5k)^2}{2 \cdot (7k)(6k)} = \frac{49k^2 + 36k^2 - 25k^2}{84k^2} = \frac{60k^2}{84k^2} = \frac{5}{7} \] Now we have: - \( \cos A = \frac{1}{5} \) - \( \cos B = \frac{19}{35} \) - \( \cos C = \frac{5}{7} \) Finally, we need to express \( \cos A : \cos B : \cos C \): \[ \cos A : \cos B : \cos C = \frac{1}{5} : \frac{19}{35} : \frac{5}{7} \] To eliminate the fractions, we can find a common denominator, which is 35: \[ \cos A : \cos B : \cos C = \frac{7}{35} : \frac{19}{35} : \frac{25}{35} = 7 : 19 : 25 \] Thus, the final answer is: \[ \cos A : \cos B : \cos C = 7 : 19 : 25 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section D (Linked Comprehension Type Questions)|27 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-B (Objective Type Questions (One option is correct))|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC , if (b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then cos A=

With usual notations, if in a triangle A B C(b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then prove that: (cosA)/7=(cosB)/(19)=(cosC)/(25)

If in a triangle ABC , (b+c)/11=(c+a)/12=(a+b)/13 then cosA is equal to

In a triangle ABC, a (b cos C - c cos B) =

In any DeltaA B C ,(b+c)/(12)=(c+a)/(13)=(a+b)/(15),\ then prove that (cos A)/2=(cos B)/7=(cos C)/(11)dot

In a triangle ABC, cos A+cos B+cos C=

In triangle ABC, /_C = (2pi)/3 then the value of cos^2 A + cos^2 B - cos A.cos B is equal

If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc) , then k is equal to

In a triangle ABC cos A = 7/8 , cos B = 11/16 .then , cos C is equal to

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section-B (Objective Type Questions One option is correct)
  1. In triangleABC, if a^(2)+b^(2)+c^(2)=ac+ab sqrt(3), then

    Text Solution

    |

  2. In a triangle ABC, ab and c are the sides of the triangle satisfying t...

    Text Solution

    |

  3. In triangleABC, which is not right angled, if p=sinA sinB sinC = and q...

    Text Solution

    |

  4. In triangleABC, if R/r le 2, and a=2, then triangle is equal to (trian...

    Text Solution

    |

  5. In triangleABC, If r(1), r(2), r(3) are exradii opposites to angles A,...

    Text Solution

    |

  6. If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca), ...

    Text Solution

    |

  7. In triangle ABC if the line joining incenter to the circumcenter is pa...

    Text Solution

    |

  8. With usual notations, if in a triangle ABC (b+c)/(11) = (c+a)/(12) = ...

    Text Solution

    |

  9. Consider a regular polygon of 12 sides each of length one until, then ...

    Text Solution

    |

  10. If the perimeter of a triangle is 6, then its maximum area is

    Text Solution

    |

  11. In a triangle ABC, If A=B=120^(@) and R=8r, then the value of cosC is

    Text Solution

    |

  12. In a triangle ABC, we have acosB+bcosC+ccosA=(a+b+c)/2 where A, B, ...

    Text Solution

    |

  13. A regular pentagons is inscribed in a circle. If A(1) and A(2) represe...

    Text Solution

    |

  14. If in Delta ABC, 8R^(2) = a^(2) + b^(2) + c^(2), then the triangle ABC...

    Text Solution

    |

  15. O is the circumcenter of A B Ca n dR1, R2, R3 are respectively, the r...

    Text Solution

    |

  16. In triangle ABC, if r(1) = 2r(2) = 3r(3), then a : b is equal to

    Text Solution

    |

  17. In triangleABC, the expression (b^(2)-c^(2))/(asin(B-C)) + (c^(2)-a^2...

    Text Solution

    |

  18. In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)),...

    Text Solution

    |

  19. ABCD is a trapezium such that AB and DC are parallel and BC is perpend...

    Text Solution

    |

  20. If the median of triangle ABC through A is perpendicular AB, then the ...

    Text Solution

    |