Home
Class 12
MATHS
Let tanalpha = a/b, alpha being an acute...

Let `tanalpha = a/b, alpha` being an acute angle. Denote by f(a,b) the value of the expression `a " cosec "2beta - b sec 2beta,` where `alpha = 6 beta`. Then `f(8,15)` is equal to …………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning outlined in the video transcript. ### Step 1: Identify the given values We are given that: - \(\tan \alpha = \frac{a}{b}\) - \(\alpha = 6\beta\) - We need to find \(f(8, 15)\). From this, we can identify: - \(a = 8\) - \(b = 15\) ### Step 2: Define the function \(f(a, b)\) The function \(f(a, b)\) is defined as: \[ f(a, b) = a \cdot \csc(2\beta) - b \cdot \sec(2\beta) \] ### Step 3: Express \(\csc(2\beta)\) and \(\sec(2\beta)\) in terms of \(\alpha\) Using the definitions of sine and cosine: \[ \csc(2\beta) = \frac{1}{\sin(2\beta)}, \quad \sec(2\beta) = \frac{1}{\cos(2\beta)} \] ### Step 4: Use the triangle relationships From the right triangle with sides \(a\) and \(b\): - The hypotenuse \(h\) can be calculated using the Pythagorean theorem: \[ h = \sqrt{a^2 + b^2} = \sqrt{8^2 + 15^2} = \sqrt{64 + 225} = \sqrt{289} = 17 \] ### Step 5: Calculate \(\sin(\alpha)\) and \(\cos(\alpha)\) Using the definitions: \[ \sin(\alpha) = \frac{a}{h} = \frac{8}{17}, \quad \cos(\alpha) = \frac{b}{h} = \frac{15}{17} \] ### Step 6: Substitute into the function \(f(a, b)\) Substituting \(\sin(2\beta)\) and \(\cos(2\beta)\): \[ f(8, 15) = 8 \cdot \frac{1}{\sin(2\beta)} - 15 \cdot \frac{1}{\cos(2\beta)} \] This can be rewritten as: \[ f(8, 15) = \frac{8 \cdot \cos(2\beta) - 15 \cdot \sin(2\beta)}{\sin(2\beta) \cdot \cos(2\beta)} \] ### Step 7: Use the sine subtraction formula Using the sine subtraction formula: \[ \sin(6\beta - 2\beta) = \sin(4\beta) = \sin(6\beta)\cos(2\beta) - \cos(6\beta)\sin(2\beta) \] ### Step 8: Final expression for \(f(a, b)\) Thus, we can express \(f(a, b)\) as: \[ f(a, b) = \sqrt{a^2 + b^2} \cdot \frac{\sin(4\beta)}{\sin(2\beta) \cdot \cos(2\beta)} \] ### Step 9: Substitute values into the function Substituting \(a = 8\) and \(b = 15\): \[ f(8, 15) = 2 \cdot \sqrt{8^2 + 15^2} = 2 \cdot 17 = 34 \] ### Final Answer Thus, \(f(8, 15) = 34\). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If t a nalpha=p/q , where alpha=6beta,alpha being acute angle, prove that 1/2{pcos e c2beta-qsec2beta}=sqrt(p^2+q^2)

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If "2sec" (2alpha) = "tan" beta + "cot"beta , then one of the value of alpha + beta is

If "2sec" (2alpha) = "tan" beta + "cot"beta , then one of the value of alpha + beta is

If sec alpha is the average of sec(alpha - 2beta) and sec(alpha + 2beta) then the value of (2 sin^2 beta - sin^2 alpha ) where beta!= n pi is

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

Let alpha and beta be two roots of the equation x^(2) + 2x + 2 = 0 . Then alpha^(15) + beta^(15) is equal to

The minimum value of the expression sin alpha + sin beta+ sin gamma , where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

If alpha and beta are acute angles such that alpha+beta=lamda , where constant, find the maximum possible value of the expression sin alpha+sin beta+cos alpha+cos beta .

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section I (subjective Type questions)
  1. The sum of value of alpha, 0 le alpha le 2pi, such that x^(2) -2x cos ...

    Text Solution

    |

  2. Let f and g be function defined by f(theta)=cos^(2)theta and g(theta)=...

    Text Solution

    |

  3. Let tanalpha = a/b, alpha being an acute angle. Denote by f(a,b) the v...

    Text Solution

    |

  4. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  5. cot16^0cot44^0+cot44^0cot76^0-cot76^0cot16^0= 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  6. If cos(theta - theta(1)) =1/(2sqrt(3)) and sin(theta-theta(2))=1/(3sqr...

    Text Solution

    |

  7. If cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-3/2 , prove that ...

    Text Solution

    |

  8. If alpha and beta satisfy sinalpha cos beta=-1/2, then the greatest va...

    Text Solution

    |

  9. If cos (pi/12) = (sqrt(2) + sqrt(6))/(4), then all x in (0,pi/2) such ...

    Text Solution

    |

  10. In a DeltaABC if 3sinA+4 cosB=6, 4 sinB+3cosA=1 then possible value (s...

    Text Solution

    |

  11. If (4 cos^(2)9^(@)-3)(4 cos^(2)27^(@)-3) =tanK^(@) , then K is equal ...

    Text Solution

    |

  12. In triangle ABC, prove that the maximum value of tanA/2tanB/2tanC/2i s...

    Text Solution

    |

  13. In a Delta ABC, angle B lt angle C and the values of B and C satisfy t...

    Text Solution

    |

  14. If A ={ theta : 2cos^2 theta + sintheta <=2} , and B = {theta: pi/2<=t...

    Text Solution

    |

  15. Solve 4cot2theta=cot^2theta-tan^2theta

    Text Solution

    |

  16. If 3tan(theta-15^0)=tan(theta+15^0)0<theta<90^0 , find theta .

    Text Solution

    |

  17. If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))), then the general v...

    Text Solution

    |

  18. Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

    Text Solution

    |

  19. Solve the equation tan x + (cosx)/(sqrt(1+sin2x))=2.

    Text Solution

    |

  20. Let x and y, (0 lt x, y lt pi/2) satisfy 3sin^(2)x + 2sin^(2)y=1 and 3...

    Text Solution

    |