Home
Class 12
MATHS
If cos(theta - theta(1)) =1/(2sqrt(3)) a...

If `cos(theta - theta_(1)) =1/(2sqrt(3))` and `sin(theta-theta_(2))=1/(3sqrt(2))`, where `0 lt theta - theta_(1), theta-theta_(2) lt pi/2`, then the value of `108/5{ cos^(2) (theta_(1)-theta_(2)) + sqrt(6)/18 sin(theta_(1)-theta_(2))}` is …………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given information and use trigonometric identities. ### Step 1: Given Information We have: 1. \( \cos(\theta - \theta_1) = \frac{1}{2\sqrt{3}} \) 2. \( \sin(\theta - \theta_2) = \frac{1}{3\sqrt{2}} \) ### Step 2: Find \( \sin(\theta - \theta_1) \) Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \sin(\theta - \theta_1) = \sqrt{1 - \cos^2(\theta - \theta_1)} = \sqrt{1 - \left(\frac{1}{2\sqrt{3}}\right)^2} \] Calculating \( \cos^2(\theta - \theta_1) \): \[ \cos^2(\theta - \theta_1) = \frac{1}{12} \] Thus, \[ \sin(\theta - \theta_1) = \sqrt{1 - \frac{1}{12}} = \sqrt{\frac{11}{12}} = \frac{\sqrt{11}}{2\sqrt{3}} \] ### Step 3: Find \( \cos(\theta - \theta_2) \) Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \cos(\theta - \theta_2) = \sqrt{1 - \sin^2(\theta - \theta_2)} = \sqrt{1 - \left(\frac{1}{3\sqrt{2}}\right)^2} \] Calculating \( \sin^2(\theta - \theta_2) \): \[ \sin^2(\theta - \theta_2) = \frac{1}{18} \] Thus, \[ \cos(\theta - \theta_2) = \sqrt{1 - \frac{1}{18}} = \sqrt{\frac{17}{18}} = \frac{\sqrt{17}}{3\sqrt{2}} \] ### Step 4: Find \( \cos(\theta_1 - \theta_2) \) Using the cosine subtraction formula: \[ \cos(\theta_1 - \theta_2) = \cos(\theta - \theta_2) \cos(\theta - \theta_1) + \sin(\theta - \theta_2) \sin(\theta - \theta_1) \] Substituting the values: \[ \cos(\theta_1 - \theta_2) = \left(\frac{\sqrt{17}}{3\sqrt{2}}\right) \left(\frac{1}{2\sqrt{3}}\right) + \left(\frac{1}{3\sqrt{2}}\right) \left(\frac{\sqrt{11}}{2\sqrt{3}}\right) \] Calculating: \[ = \frac{\sqrt{17}}{6\sqrt{6}} + \frac{\sqrt{11}}{6\sqrt{6}} = \frac{\sqrt{17} + \sqrt{11}}{6\sqrt{6}} \] ### Step 5: Find \( \sin(\theta_1 - \theta_2) \) Using the sine subtraction formula: \[ \sin(\theta_1 - \theta_2) = \sin(\theta - \theta_2) \cos(\theta - \theta_1) - \cos(\theta - \theta_2) \sin(\theta - \theta_1) \] Substituting the values: \[ \sin(\theta_1 - \theta_2) = \left(\frac{1}{3\sqrt{2}}\right) \left(\frac{1}{2\sqrt{3}}\right) - \left(\frac{\sqrt{17}}{3\sqrt{2}}\right) \left(\frac{\sqrt{11}}{2\sqrt{3}}\right) \] Calculating: \[ = \frac{1}{6\sqrt{6}} - \frac{\sqrt{187}}{6\sqrt{6}} = \frac{1 - \sqrt{187}}{6\sqrt{6}} \] ### Step 6: Calculate the Final Expression Now we substitute \( \cos^2(\theta_1 - \theta_2) \) and \( \sin(\theta_1 - \theta_2) \) into the expression: \[ \frac{108}{5} \left( \left(\frac{\sqrt{17} + \sqrt{11}}{6\sqrt{6}}\right)^2 + \frac{\sqrt{6}}{18} \left(\frac{1 - \sqrt{187}}{6\sqrt{6}}\right) \right) \] Calculating \( \cos^2(\theta_1 - \theta_2) \): \[ = \frac{(17 + 11 + 2\sqrt{187})}{216} \] And simplifying the entire expression gives us the final value. ### Final Answer After performing all calculations, we find that the value of the expression is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta_(2) lt theta_(1) lt pi/4, cos (theta_(1) + theta_(2)) = 3/5 and cos(theta_(1)-theta_(2))=4/5 , then sintheta_(1) sintheta_(2) equal to

If pi

If pi lt theta lt (3pi)/(2) , then find the value of sqrt((1-cos2theta)/(1+cos 2 theta)) .

If pi/2

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

If cottheta=1/(sqrt(3)) , show that (1-cos^2theta)/(2-sin^2theta)=3/5

If cottheta=1/(sqrt(3)) , show that (1-cos^2theta)/(2-sin^2theta)=3/5

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section I (subjective Type questions)
  1. Find the value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""...

    Text Solution

    |

  2. cot16^0cot44^0+cot44^0cot76^0-cot76^0cot16^0= 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  3. If cos(theta - theta(1)) =1/(2sqrt(3)) and sin(theta-theta(2))=1/(3sqr...

    Text Solution

    |

  4. If cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-3/2 , prove that ...

    Text Solution

    |

  5. If alpha and beta satisfy sinalpha cos beta=-1/2, then the greatest va...

    Text Solution

    |

  6. If cos (pi/12) = (sqrt(2) + sqrt(6))/(4), then all x in (0,pi/2) such ...

    Text Solution

    |

  7. In a DeltaABC if 3sinA+4 cosB=6, 4 sinB+3cosA=1 then possible value (s...

    Text Solution

    |

  8. If (4 cos^(2)9^(@)-3)(4 cos^(2)27^(@)-3) =tanK^(@) , then K is equal ...

    Text Solution

    |

  9. In triangle ABC, prove that the maximum value of tanA/2tanB/2tanC/2i s...

    Text Solution

    |

  10. In a Delta ABC, angle B lt angle C and the values of B and C satisfy t...

    Text Solution

    |

  11. If A ={ theta : 2cos^2 theta + sintheta <=2} , and B = {theta: pi/2<=t...

    Text Solution

    |

  12. Solve 4cot2theta=cot^2theta-tan^2theta

    Text Solution

    |

  13. If 3tan(theta-15^0)=tan(theta+15^0)0<theta<90^0 , find theta .

    Text Solution

    |

  14. If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))), then the general v...

    Text Solution

    |

  15. Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

    Text Solution

    |

  16. Solve the equation tan x + (cosx)/(sqrt(1+sin2x))=2.

    Text Solution

    |

  17. Let x and y, (0 lt x, y lt pi/2) satisfy 3sin^(2)x + 2sin^(2)y=1 and 3...

    Text Solution

    |

  18. If angles A and B satisfy sqrt(2)cosA = cosB + cos^(3)B and sqrt(2)sin...

    Text Solution

    |

  19. Let the sum of all solutions of the equation 3sqrt(3) sin^(3)x + cos^...

    Text Solution

    |

  20. Solve the equation, 4^(sin2x + 2cos^(2)x+ 2sin^(2)x)=64.

    Text Solution

    |