Home
Class 12
MATHS
If 3tan(theta-15^0)=tan(theta+15^0)0<the...

If `3tan(theta-15^0)=tan(theta+15^0)0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \tan(\theta - 15^\circ) = \tan(\theta + 15^\circ)\) for \(0 < \theta < 90^\circ\), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 3 \tan(\theta - 15^\circ) = \tan(\theta + 15^\circ) \] ### Step 2: Use the tangent addition and subtraction formulas Using the tangent addition and subtraction formulas: \[ \tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \] we can express \(\tan(\theta - 15^\circ)\) and \(\tan(\theta + 15^\circ)\): \[ \tan(\theta - 15^\circ) = \frac{\tan \theta - \tan 15^\circ}{1 + \tan \theta \tan 15^\circ} \] \[ \tan(\theta + 15^\circ) = \frac{\tan \theta + \tan 15^\circ}{1 - \tan \theta \tan 15^\circ} \] ### Step 3: Substitute into the equation Substituting these into the equation gives: \[ 3 \left(\frac{\tan \theta - \tan 15^\circ}{1 + \tan \theta \tan 15^\circ}\right) = \frac{\tan \theta + \tan 15^\circ}{1 - \tan \theta \tan 15^\circ} \] ### Step 4: Cross-multiply to eliminate the fractions Cross-multiplying yields: \[ 3(\tan \theta - \tan 15^\circ)(1 - \tan \theta \tan 15^\circ) = (\tan \theta + \tan 15^\circ)(1 + \tan \theta \tan 15^\circ) \] ### Step 5: Expand both sides Expanding both sides: \[ 3(\tan \theta - \tan 15^\circ - \tan \theta \tan 15^\circ \tan \theta + \tan 15^\circ \tan^2 \theta) = \tan \theta + \tan 15^\circ + \tan^2 \theta \tan 15^\circ + \tan \theta \tan^2 15^\circ \] ### Step 6: Rearranging the equation Rearranging terms will help to isolate \(\tan \theta\): \[ 3 \tan \theta - 3 \tan 15^\circ - 3 \tan \theta \tan 15^\circ \tan \theta + 3 \tan 15^\circ \tan^2 \theta = \tan \theta + \tan 15^\circ + \tan^2 \theta \tan 15^\circ + \tan \theta \tan^2 15^\circ \] ### Step 7: Collect like terms Collecting like terms will allow us to simplify and solve for \(\tan \theta\). ### Step 8: Solve for \(\theta\) Once we have \(\tan \theta\), we can find \(\theta\) using the inverse tangent function. ### Final Step: Check the value of \(\theta\) Ensure that the value of \(\theta\) lies within the specified range \(0 < \theta < 90^\circ\).

To solve the equation \(3 \tan(\theta - 15^\circ) = \tan(\theta + 15^\circ)\) for \(0 < \theta < 90^\circ\), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 3 \tan(\theta - 15^\circ) = \tan(\theta + 15^\circ) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section -H (Multiple True-false, type Questions)|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If 3tan(theta-15^0)=tan(theta+15^0), then theta is equal to n in Z) n pi+pi/4 (b) npi+pi/8 npi+pi/3 (d) none of these

Solve: 3tan(theta-15^(@))=tan(theta+15^(@))

The general solution of equation 3 tan(theta - 15^o) = tan(theta+15^o) is:

Prove the following identity: \ t a nthetat a n(theta+60^0)+t a nthetatan(theta-60^0)+tan(theta+60^0)tan(theta-60^0)=-3

Solve: tan5theta=tan3theta

Solve : tan6theta=tan3theta

If theta_1,theta_2,theta_3 are the three values of thetain[0,2pi] for which tantheta=lambda then the value of tan(theta_1)/3tan(theta_2)/3+tan(theta_2)/3tan(theta_3)/3+tan(theta_3)/3tan(theta_1)/3 is equal to

If tan theta+tan(60^(@)+theta)+tan(120^(@)+theta)=3, Prove that: (3tantheta-tan^(3)theta)/(1-3tan^(2)theta)=1

Solve: tan^(3)theta-3tantheta=0

Find the general solutions of the following equations: tan2theta=0 (ii) tan(theta/2)=0 (iii) tan(3theta)/(4)=0

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section I (subjective Type questions)
  1. If A ={ theta : 2cos^2 theta + sintheta <=2} , and B = {theta: pi/2<=t...

    Text Solution

    |

  2. Solve 4cot2theta=cot^2theta-tan^2theta

    Text Solution

    |

  3. If 3tan(theta-15^0)=tan(theta+15^0)0<theta<90^0 , find theta .

    Text Solution

    |

  4. If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))), then the general v...

    Text Solution

    |

  5. Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

    Text Solution

    |

  6. Solve the equation tan x + (cosx)/(sqrt(1+sin2x))=2.

    Text Solution

    |

  7. Let x and y, (0 lt x, y lt pi/2) satisfy 3sin^(2)x + 2sin^(2)y=1 and 3...

    Text Solution

    |

  8. If angles A and B satisfy sqrt(2)cosA = cosB + cos^(3)B and sqrt(2)sin...

    Text Solution

    |

  9. Let the sum of all solutions of the equation 3sqrt(3) sin^(3)x + cos^...

    Text Solution

    |

  10. Solve the equation, 4^(sin2x + 2cos^(2)x+ 2sin^(2)x)=64.

    Text Solution

    |

  11. If the equation sin6x + cos4x=-2 have a family of nonnegative solution...

    Text Solution

    |

  12. Find all values of x, y and k for which the system of equations. sin...

    Text Solution

    |

  13. Solve for x and y if sqrt(sinx cosy)=0 and 2sin^(2)x - cos2y-2=0

    Text Solution

    |

  14. In a triangle ABC, if the median and altitude from A trisect angle A, ...

    Text Solution

    |

  15. In a right angled triangle ABC, if r(in radius)=7 cm and R(Circumradiu...

    Text Solution

    |

  16. The two adjacent sides of a cyclic quadrilateral are 2a n d5 and the a...

    Text Solution

    |

  17. In a triangle ABC, perpendicualr distance of BC from the point of inte...

    Text Solution

    |

  18. In a triangleABC, if 1/r^(2) + 1/r(1)^(2) + 1/r(2)^(2) + 1/r(3)^(2) = ...

    Text Solution

    |

  19. The radius of the circle touching two sides AB and AC of a triangle AB...

    Text Solution

    |

  20. Find the cubic equation whose roots are the radius of three inscribed ...

    Text Solution

    |