Home
Class 12
MATHS
If alpha satisfies 15 sin^(4)alpha + 10 ...

If `alpha` satisfies `15 sin^(4)alpha + 10 cos^(4)alpha=6`, then find the value of `27 sin^(8)alpha + 8 cos^(8) alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ 15 \sin^4 \alpha + 10 \cos^4 \alpha = 6 \] ### Step 1: Rewrite the equation We can express \( \sin^4 \alpha \) and \( \cos^4 \alpha \) in terms of \( \sin^2 \alpha \) and \( \cos^2 \alpha \). Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \), we can rewrite \( \cos^4 \alpha \) as: \[ \cos^4 \alpha = (\cos^2 \alpha)^2 = (1 - \sin^2 \alpha)^2 = 1 - 2\sin^2 \alpha + \sin^4 \alpha \] Substituting this into the original equation gives: \[ 15 \sin^4 \alpha + 10 (1 - 2\sin^2 \alpha + \sin^4 \alpha) = 6 \] ### Step 2: Simplify the equation Expanding the equation: \[ 15 \sin^4 \alpha + 10 - 20 \sin^2 \alpha + 10 \sin^4 \alpha = 6 \] Combining like terms: \[ (15 + 10) \sin^4 \alpha - 20 \sin^2 \alpha + 10 - 6 = 0 \] This simplifies to: \[ 25 \sin^4 \alpha - 20 \sin^2 \alpha + 4 = 0 \] ### Step 3: Substitute \( x = \sin^2 \alpha \) Let \( x = \sin^2 \alpha \). Then the equation becomes: \[ 25x^2 - 20x + 4 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 25 \), \( b = -20 \), and \( c = 4 \). Calculating the discriminant: \[ b^2 - 4ac = (-20)^2 - 4 \cdot 25 \cdot 4 = 400 - 400 = 0 \] Since the discriminant is zero, there is one solution: \[ x = \frac{20}{2 \cdot 25} = \frac{20}{50} = \frac{2}{5} \] ### Step 5: Find \( \sin^2 \alpha \) and \( \cos^2 \alpha \) Thus, we have: \[ \sin^2 \alpha = \frac{2}{5} \] Using \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{2}{5} = \frac{3}{5} \] ### Step 6: Calculate \( 27 \sin^8 \alpha + 8 \cos^8 \alpha \) Now we need to calculate: \[ 27 \sin^8 \alpha + 8 \cos^8 \alpha \] Calculating \( \sin^8 \alpha \) and \( \cos^8 \alpha \): \[ \sin^8 \alpha = \left(\sin^2 \alpha\right)^4 = \left(\frac{2}{5}\right)^4 = \frac{16}{625} \] \[ \cos^8 \alpha = \left(\cos^2 \alpha\right)^4 = \left(\frac{3}{5}\right)^4 = \frac{81}{625} \] Now substituting back into the expression: \[ 27 \sin^8 \alpha + 8 \cos^8 \alpha = 27 \cdot \frac{16}{625} + 8 \cdot \frac{81}{625} \] Calculating each term: \[ = \frac{432}{625} + \frac{648}{625} = \frac{432 + 648}{625} = \frac{1080}{625} \] ### Final Result Thus, the value of \( 27 \sin^8 \alpha + 8 \cos^8 \alpha \) is: \[ \frac{1080}{625} \]

To solve the problem, we start with the given equation: \[ 15 \sin^4 \alpha + 10 \cos^4 \alpha = 6 \] ### Step 1: Rewrite the equation We can express \( \sin^4 \alpha \) and \( \cos^4 \alpha \) in terms of \( \sin^2 \alpha \) and \( \cos^2 \alpha \). Using the identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \), we can rewrite \( \cos^4 \alpha \) as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If 15 sin^(4)alpha+10cos^(4)alpha=6 , then the value of 8 cosec^(6)alpha+27 sec^(6)alpha is

If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 alpha+8sec^6 alpha.

If 10sin^4alpha+15cos^4alpha=6 , find the value of 27cos e c^6alpha+8s e c^6alpha .

If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8 sec^4 alpha-75 is

If alpha = 112^(@) 30' , find the value of sin alpha and cos alpha

If sin alpha -cos alpha = m , then the value of sin^6alpha+cos^6alpha in terms of m is

If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha+8 sec^(4) alpha is S, then find the value of (S)/(25) .

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If 0ltalpha,betaltpi and cos alpha+cos beta -cos(alpha+beta)=(3)/(2) , then the value of sqrt3 sin alpha+cos alpha is equal to

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section - J (Akash Challengers Question)
  1. If cos^(2009)x(1) + cos^(2009)x(2) + cos^(2009)x(3) + ………. +cos^(2009)...

    Text Solution

    |

  2. If a cos^(3) alpha+3a cos alpha sin^(2) alpha=m and a sin^(3) alpha+3a...

    Text Solution

    |

  3. If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6, then find the ...

    Text Solution

    |

  4. If A= tan27theta - tantheta and B= (sintheta)/(cos 3theta) +(sin 3thet...

    Text Solution

    |

  5. If A=sqrt(3) cot 20^(@) - 4 cos20^(@) and B= sin12^(@) sin48^(@) sin54...

    Text Solution

    |

  6. If tan alpha = 1/sqrt(x(x^2+x+1)),tan beta=sqrtx/sqrt(x^2+x+1) and ...

    Text Solution

    |

  7. The number of values of x lying in [-pi, pi] and satisfying 2sin^2the...

    Text Solution

    |

  8. The number of solutions of the equation sinx.cosx(cosx-sinx)^(2). (sin...

    Text Solution

    |

  9. The number of solutions of the equation sin^(5)theta + 1/(sintheta) = ...

    Text Solution

    |

  10. The number of solutions of x in the interval [-pi, pi] of the equation...

    Text Solution

    |

  11. The general solution of the equation tan(x+20^@)tan(x-4 0^(@))=tan(x-...

    Text Solution

    |

  12. Let x in [0,2pi] The curve y=secx tanx +2tanx - sec x and the line y=2...

    Text Solution

    |

  13. Let p (x) be a polynomial with real coefficient and p (x)=x^(2)+2x+1. ...

    Text Solution

    |

  14. Let three sets be defined as A={x|cos2x + cosx+1=0} B={x|cos2x + 3...

    Text Solution

    |

  15. The number of solutions of the equation 2^|x|=1+2|cosx| is

    Text Solution

    |

  16. If the equation 1 +sin^2 xtheta= costheta has a non-zero solution in t...

    Text Solution

    |