Home
Class 12
MATHS
If A= tan27theta - tantheta and B= (sint...

If `A= tan27theta - tantheta` and `B= (sintheta)/(cos 3theta) +(sin 3theta)/(cos 9theta) + (sin 9theta)/(cos 27theta)`, then the value of `(A+B)/(A-B) +(A-B)/(A+B) -10/3` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression \((A+B)/(A-B) +(A-B)/(A+B) -10/3\) where \(A = \tan(27\theta) - \tan(\theta)\) and \(B = \frac{\sin(\theta)}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)}\). ### Step 1: Simplify \(B\) We start with the expression for \(B\): \[ B = \frac{\sin(\theta)}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} \] We can rewrite each term in \(B\) using the identity \(\frac{\sin(x)}{\cos(y)} = \tan(x) \cdot \sec(y)\): \[ B = \tan(\theta) \sec(3\theta) + \tan(3\theta) \sec(9\theta) + \tan(9\theta) \sec(27\theta) \] ### Step 2: Use the identity for \(B\) We can express \(B\) in a different way. Notice that: \[ B = \frac{\sin(\theta)}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} \] By using the double angle formula, we can rewrite: \[ \frac{\sin(2\theta)}{\cos(3\theta)} = 2 \frac{\sin(\theta) \cos(\theta)}{\cos(3\theta)} \] Continuing this process for each term, we can find a pattern or relation among the terms. ### Step 3: Find a relation between \(A\) and \(B\) From the analysis, we find that: \[ B = \frac{1}{2} A \] This means: \[ A = 2B \] ### Step 4: Substitute \(A\) and \(B\) into the expression Now we substitute \(A\) and \(B\) into the expression we need to evaluate: \[ \frac{A+B}{A-B} + \frac{A-B}{A+B} - \frac{10}{3} \] Substituting \(A = 2B\): \[ \frac{2B + B}{2B - B} + \frac{2B - B}{2B + B} - \frac{10}{3} \] This simplifies to: \[ \frac{3B}{B} + \frac{B}{3B} - \frac{10}{3} \] ### Step 5: Simplify the fractions The expression simplifies to: \[ 3 + \frac{1}{3} - \frac{10}{3} \] ### Step 6: Combine the terms Now, we combine the terms: \[ 3 = \frac{9}{3} \] So, \[ \frac{9}{3} + \frac{1}{3} - \frac{10}{3} = \frac{9 + 1 - 10}{3} = \frac{0}{3} = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]

To solve the given problem, we need to evaluate the expression \((A+B)/(A-B) +(A-B)/(A+B) -10/3\) where \(A = \tan(27\theta) - \tan(\theta)\) and \(B = \frac{\sin(\theta)}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)}\). ### Step 1: Simplify \(B\) We start with the expression for \(B\): \[ B = \frac{\sin(\theta)}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If k_1=tan 27 theta-tan theta and k_2=(sintheta)/(cos3theta)+(sin3theta)/(cos9theta)+(sin9theta)/(cos27theta) then,

(sin theta)/(cos3theta)+(sin3theta)/(cos9theta)+(sin9theta)/(cos27theta)+(sin27theta)/(cos81theta)=

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

(sin theta)/(cos(3theta))+(sin(3theta))/(cos(9theta))+(sin(9theta))/(cos(27theta))+(sin(27theta))/(cos(81theta))=

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that : sintheta/cos(3theta)+sin(3theta)/cos(9theta)+sin(9theta)/cos(27theta)=1/2(tan(27theta)-tan(theta))

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section - J (Akash Challengers Question)
  1. If cos^(2009)x(1) + cos^(2009)x(2) + cos^(2009)x(3) + ………. +cos^(2009)...

    Text Solution

    |

  2. If a cos^(3) alpha+3a cos alpha sin^(2) alpha=m and a sin^(3) alpha+3a...

    Text Solution

    |

  3. If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6, then find the ...

    Text Solution

    |

  4. If A= tan27theta - tantheta and B= (sintheta)/(cos 3theta) +(sin 3thet...

    Text Solution

    |

  5. If A=sqrt(3) cot 20^(@) - 4 cos20^(@) and B= sin12^(@) sin48^(@) sin54...

    Text Solution

    |

  6. If tan alpha = 1/sqrt(x(x^2+x+1)),tan beta=sqrtx/sqrt(x^2+x+1) and ...

    Text Solution

    |

  7. The number of values of x lying in [-pi, pi] and satisfying 2sin^2the...

    Text Solution

    |

  8. The number of solutions of the equation sinx.cosx(cosx-sinx)^(2). (sin...

    Text Solution

    |

  9. The number of solutions of the equation sin^(5)theta + 1/(sintheta) = ...

    Text Solution

    |

  10. The number of solutions of x in the interval [-pi, pi] of the equation...

    Text Solution

    |

  11. The general solution of the equation tan(x+20^@)tan(x-4 0^(@))=tan(x-...

    Text Solution

    |

  12. Let x in [0,2pi] The curve y=secx tanx +2tanx - sec x and the line y=2...

    Text Solution

    |

  13. Let p (x) be a polynomial with real coefficient and p (x)=x^(2)+2x+1. ...

    Text Solution

    |

  14. Let three sets be defined as A={x|cos2x + cosx+1=0} B={x|cos2x + 3...

    Text Solution

    |

  15. The number of solutions of the equation 2^|x|=1+2|cosx| is

    Text Solution

    |

  16. If the equation 1 +sin^2 xtheta= costheta has a non-zero solution in t...

    Text Solution

    |