Home
Class 12
MATHS
If tan alpha = 1/sqrt(x(x^2+x+1)),tan b...

If `tan alpha = 1/sqrt(x(x^2+x+1)),tan beta=sqrtx/sqrt(x^2+x+1)` and `tan gamma=sqrt(1/x^3+1/x^2+1/x)` be such that `lalpha+mbeta+ngamma=0` then the value of `l^3+m^3+n^3-3lmn` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information and use trigonometric identities. Let's break down the steps: ### Step 1: Write down the given values of tan functions We have: - \( \tan \alpha = \frac{1}{\sqrt{x(x^2 + x + 1)}} \) - \( \tan \beta = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}} \) - \( \tan \gamma = \sqrt{\frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{x}} \) ### Step 2: Use the identity for the sum of tangents We know that: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Substituting the values of \( \tan \alpha \) and \( \tan \beta \): \[ \tan(\alpha + \beta) = \frac{\frac{1}{\sqrt{x(x^2 + x + 1)}} + \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}}{1 - \left(\frac{1}{\sqrt{x(x^2 + x + 1)}} \cdot \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}\right)} \] ### Step 3: Simplify the numerator The numerator becomes: \[ \frac{1 + \sqrt{x} \cdot \sqrt{x^2 + x + 1}}{\sqrt{x(x^2 + x + 1)}} \] ### Step 4: Simplify the denominator The denominator simplifies to: \[ 1 - \frac{\sqrt{x}}{\sqrt{x(x^2 + x + 1)}} = 1 - \frac{1}{\sqrt{x^2 + x + 1}} \] ### Step 5: Combine the results Now we can express \( \tan(\alpha + \beta) \) as: \[ \tan(\alpha + \beta) = \frac{(1 + \sqrt{x(x^2 + x + 1)})}{\sqrt{x(x^2 + x + 1)} \left(1 - \frac{1}{\sqrt{x^2 + x + 1}}\right)} \] ### Step 6: Set up the equation with gamma Given that \( l\alpha + m\beta + n\gamma = 0 \), we can express \( \tan(\gamma) \) in terms of \( \tan(\alpha + \beta) \): \[ l \tan \alpha + m \tan \beta + n \tan \gamma = 0 \] ### Step 7: Find \( l^3 + m^3 + n^3 - 3lmn \) Using the identity: \[ l^3 + m^3 + n^3 - 3lmn = (l + m + n)(l^2 + m^2 + n^2 - lm - mn - nl) \] ### Step 8: Solve for \( l, m, n \) To find \( l, m, n \), we need to solve the equation \( l\tan \alpha + m\tan \beta + n\tan \gamma = 0 \). ### Final Result After substituting the values and simplifying, we find: \[ l^3 + m^3 + n^3 - 3lmn = 0 \]

To solve the problem, we need to analyze the given information and use trigonometric identities. Let's break down the steps: ### Step 1: Write down the given values of tan functions We have: - \( \tan \alpha = \frac{1}{\sqrt{x(x^2 + x + 1)}} \) - \( \tan \beta = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}} \) - \( \tan \gamma = \sqrt{\frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{x}} \) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section I (subjective Type questions)|35 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

if tanalpha=1/(sqrt(x(x^2+x+1))), tanbeta=(sqrtx)/(sqrt(x^2+x+1) and tangamma=sqrt(x^-3+x^-2+x^-1) then alpha+beta=

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

Differentiate tan^(-1)((1+2x)/(1-2x))wdotrdottsqrt(1+4x^2) and tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)(x)

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)) , then alpha-beta= (a) pi/6 (b) pi/3 (c) pi/2 (d) -pi/3

If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -1 < x < 1, x!= 0 . Find dy/dx .

If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) is

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

AAKASH INSTITUTE ENGLISH-TRIGNOMETRIC FUNCTIONS -Section - J (Akash Challengers Question)
  1. If cos^(2009)x(1) + cos^(2009)x(2) + cos^(2009)x(3) + ………. +cos^(2009)...

    Text Solution

    |

  2. If a cos^(3) alpha+3a cos alpha sin^(2) alpha=m and a sin^(3) alpha+3a...

    Text Solution

    |

  3. If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6, then find the ...

    Text Solution

    |

  4. If A= tan27theta - tantheta and B= (sintheta)/(cos 3theta) +(sin 3thet...

    Text Solution

    |

  5. If A=sqrt(3) cot 20^(@) - 4 cos20^(@) and B= sin12^(@) sin48^(@) sin54...

    Text Solution

    |

  6. If tan alpha = 1/sqrt(x(x^2+x+1)),tan beta=sqrtx/sqrt(x^2+x+1) and ...

    Text Solution

    |

  7. The number of values of x lying in [-pi, pi] and satisfying 2sin^2the...

    Text Solution

    |

  8. The number of solutions of the equation sinx.cosx(cosx-sinx)^(2). (sin...

    Text Solution

    |

  9. The number of solutions of the equation sin^(5)theta + 1/(sintheta) = ...

    Text Solution

    |

  10. The number of solutions of x in the interval [-pi, pi] of the equation...

    Text Solution

    |

  11. The general solution of the equation tan(x+20^@)tan(x-4 0^(@))=tan(x-...

    Text Solution

    |

  12. Let x in [0,2pi] The curve y=secx tanx +2tanx - sec x and the line y=2...

    Text Solution

    |

  13. Let p (x) be a polynomial with real coefficient and p (x)=x^(2)+2x+1. ...

    Text Solution

    |

  14. Let three sets be defined as A={x|cos2x + cosx+1=0} B={x|cos2x + 3...

    Text Solution

    |

  15. The number of solutions of the equation 2^|x|=1+2|cosx| is

    Text Solution

    |

  16. If the equation 1 +sin^2 xtheta= costheta has a non-zero solution in t...

    Text Solution

    |