Home
Class 12
MATHS
If the function f(x) = (1-x) tan ""(pix...

If the function f(x) = (1-x) ` tan ""(pix)/2` is continuous at x =1 then f (1) =

A

`2/pi`

B

` pi/2`

C

0

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(1) \) for the function \( f(x) = (1-x) \tan\left(\frac{\pi x}{2}\right) \) such that it is continuous at \( x = 1 \), we can follow these steps: ### Step 1: Evaluate \( f(1) \) Substituting \( x = 1 \) directly into the function: \[ f(1) = (1-1) \tan\left(\frac{\pi \cdot 1}{2}\right) = 0 \cdot \tan\left(\frac{\pi}{2}\right) \] Since \( \tan\left(\frac{\pi}{2}\right) \) is undefined (infinity), we have an indeterminate form \( 0 \cdot \infty \). ### Step 2: Rewrite the function To resolve the indeterminate form, we can rewrite the function: \[ f(x) = (1-x) \tan\left(\frac{\pi x}{2}\right) = (1-x) \frac{\sin\left(\frac{\pi x}{2}\right)}{\cos\left(\frac{\pi x}{2}\right)} \] ### Step 3: Find the limit as \( x \) approaches 1 We need to find: \[ \lim_{x \to 1} f(x) = \lim_{x \to 1} (1-x) \tan\left(\frac{\pi x}{2}\right) \] This can be rewritten as: \[ \lim_{x \to 1} \frac{(1-x) \sin\left(\frac{\pi x}{2}\right)}{\cos\left(\frac{\pi x}{2}\right)} \] As \( x \to 1 \), both the numerator and denominator approach 0, leading to a \( \frac{0}{0} \) form. ### Step 4: Apply L'Hôpital's Rule We can apply L'Hôpital's Rule, which states that if we have a \( \frac{0}{0} \) form, we can differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}[(1-x) \sin\left(\frac{\pi x}{2}\right)] = -\sin\left(\frac{\pi x}{2}\right) + (1-x) \cdot \frac{\pi}{2} \cos\left(\frac{\pi x}{2}\right) \] \[ \text{Denominator: } \frac{d}{dx}[\cos\left(\frac{\pi x}{2}\right)] = -\frac{\pi}{2} \sin\left(\frac{\pi x}{2}\right) \] ### Step 5: Evaluate the limit again Substituting \( x = 1 \) into the derivatives: \[ \text{Numerator at } x = 1: -\sin\left(\frac{\pi}{2}\right) + (1-1) \cdot \frac{\pi}{2} \cos\left(\frac{\pi}{2}\right) = -1 + 0 = -1 \] \[ \text{Denominator at } x = 1: -\frac{\pi}{2} \sin\left(\frac{\pi}{2}\right) = -\frac{\pi}{2} \cdot 1 = -\frac{\pi}{2} \] Thus, the limit becomes: \[ \lim_{x \to 1} f(x) = \frac{-1}{-\frac{\pi}{2}} = \frac{2}{\pi} \] ### Conclusion Since \( f(x) \) is continuous at \( x = 1 \), we have: \[ f(1) = \frac{2}{\pi} \] ### Final Answer \[ f(1) = \frac{2}{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)=((1-x))/(2)tan.(pix)/(2) is continuous at x = 1, then f(1) is equal to

If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous at x =0 then f(0)=

If function f(x) = (sqrt(1+x) - root(3)(1+x))/(x) is continuous function at x = 0, then f(0) is equal to

The value of f(0) such that the function f(x)=(root3(1+2x)-root4(1+x))/(x) is continuous at x = 0, is

For which of the following functions f(0) exists such that f(x) is continuous at x=0 f(x)=1/((log)_e|x|) b. f(x)=(cos((sin|x|)/x)) c. f(x)=x sin(pi/x) d. f(x)=1/(1+2^(cot x))

Find the value of ' a ' if the function f(x) defined by f(x)={2x-1,\ \ \ x 2 is continuous at x=2

For which of the following functions f(0) exists such that f(x) is continuous at f(x)=1/((log)_e|x|) b. f(x)=1/((log)_"e"|x|) c. f(x)=x sinpi/x d. f(x)=1/(1+2^(cot x))

Find the value of f(1) that the function f(x)= (9(x^(2/3)-2x^(1/3)+1))/((x-1)^(2)), x ne 1 is continuous at x =1

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

For what value of k is the function f(x)={(x^2-1)/(x-1),\ \ \ x!=1k ,\ \ \ x=1 continuous at x=1 ?

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} The...

    Text Solution

    |

  2. If the function f(x) = (1-x) tan ""(pix)/2 is continuous at x =1 th...

    Text Solution

    |

  3. Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x)...

    Text Solution

    |

  4. Let f(x)={:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is co...

    Text Solution

    |

  5. Let f(x)= {:{((x+a) , x lt1),( ax^(2)+1, xge1):} then f(x) is continu...

    Text Solution

    |

  6. If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous a...

    Text Solution

    |

  7. Let f(x) = (x(2^(x)-1))/( 1- cos x) for x ne 0 what choice of f(0)...

    Text Solution

    |

  8. If f(x)={:{([x]+[-x] , xne 0), ( lambda , x =0):} where [.] denotes...

    Text Solution

    |

  9. If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the ...

    Text Solution

    |

  10. Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

    Text Solution

    |

  11. If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1...

    Text Solution

    |

  12. let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is d...

    Text Solution

    |

  13. If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/...

    Text Solution

    |

  14. Let f(x) = x|x| then f'(0) is equal to

    Text Solution

    |

  15. If f(x) =|x| , then f'(0) is

    Text Solution

    |

  16. Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x)...

    Text Solution

    |

  17. If f(x )=sqrt(25-x^(2)), then what is underset(xto1)lim(f(x)-f(1))/(x-...

    Text Solution

    |

  18. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  19. If f(x)=log|x|,xne0 then f'(x) equals

    Text Solution

    |

  20. d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    Text Solution

    |