Home
Class 12
MATHS
Let f(x) = {:{ (x sin""(1/x) , x ne 0) ...

Let ` f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):}`
then f(x) is continuous at x = 0 if

A

k =1

B

k =0

C

k = 2

D

k = -1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases} \] is continuous at \( x = 0 \), we need to check the condition for continuity, which states that: \[ \lim_{x \to 0} f(x) = f(0) \] This means we need to find the limit of \( f(x) \) as \( x \) approaches \( 0 \) and set it equal to \( k \). ### Step 1: Find the limit as \( x \) approaches \( 0 \) We need to evaluate: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) \] ### Step 2: Use the Squeeze Theorem We know that the sine function is bounded: \[ -1 \leq \sin\left(\frac{1}{x}\right) \leq 1 \] Multiplying through by \( x \) (noting that \( x \) approaches \( 0 \) from both sides, so we consider the absolute value): \[ -x \leq x \sin\left(\frac{1}{x}\right) \leq x \] ### Step 3: Evaluate the limits of the bounding functions Now, we take the limit of the bounding functions as \( x \) approaches \( 0 \): \[ \lim_{x \to 0} -x = 0 \] \[ \lim_{x \to 0} x = 0 \] ### Step 4: Apply the Squeeze Theorem Since: \[ \lim_{x \to 0} -x \leq \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) \leq \lim_{x \to 0} x \] and both limits on the left and right are equal to \( 0 \), by the Squeeze Theorem, we have: \[ \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0 \] ### Step 5: Set the limit equal to \( k \) Now, since \( f(0) = k \), we set: \[ \lim_{x \to 0} f(x) = f(0) \implies 0 = k \] ### Conclusion Thus, the value of \( k \) for which \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

Let f (x)= {{:(x ^(n) (sin ""(1)/(x )",") , x ne 0),( 0"," , x =0):} Such that f (x) is continuous at x =0, f '(0) is real and finite, and lim _(x to 0^(+)) f'(x) does not exist. The holds true for which of the following values of n ?

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

If f(x) ={:{((sin 3x)/(sin 5x)", "x ne 0),(0", " x= 0):}, then discuss its continuity at x= 0. .

f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} The...

    Text Solution

    |

  2. If the function f(x) = (1-x) tan ""(pix)/2 is continuous at x =1 th...

    Text Solution

    |

  3. Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x)...

    Text Solution

    |

  4. Let f(x)={:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is co...

    Text Solution

    |

  5. Let f(x)= {:{((x+a) , x lt1),( ax^(2)+1, xge1):} then f(x) is continu...

    Text Solution

    |

  6. If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous a...

    Text Solution

    |

  7. Let f(x) = (x(2^(x)-1))/( 1- cos x) for x ne 0 what choice of f(0)...

    Text Solution

    |

  8. If f(x)={:{([x]+[-x] , xne 0), ( lambda , x =0):} where [.] denotes...

    Text Solution

    |

  9. If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the ...

    Text Solution

    |

  10. Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

    Text Solution

    |

  11. If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1...

    Text Solution

    |

  12. let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is d...

    Text Solution

    |

  13. If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/...

    Text Solution

    |

  14. Let f(x) = x|x| then f'(0) is equal to

    Text Solution

    |

  15. If f(x) =|x| , then f'(0) is

    Text Solution

    |

  16. Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x)...

    Text Solution

    |

  17. If f(x )=sqrt(25-x^(2)), then what is underset(xto1)lim(f(x)-f(1))/(x-...

    Text Solution

    |

  18. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  19. If f(x)=log|x|,xne0 then f'(x) equals

    Text Solution

    |

  20. d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    Text Solution

    |