Home
Class 12
MATHS
Let f(x)={:{((3|x|+4tanx)/x, x ne 0),(k ...

Let f(x)=`{:{((3|x|+4tanx)/x, x ne 0),(k , x =0):}`
Then f(x) is continuous at x = 0 for ,

A

k =7

B

k =1

C

No k

D

k = 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for which the function \( f(x) \) is continuous at \( x = 0 \), we need to analyze the function given by: \[ f(x) = \begin{cases} \frac{3|x| + 4\tan x}{x}, & x \neq 0 \\ k, & x = 0 \end{cases} \] ### Step 1: Find the limit of \( f(x) \) as \( x \) approaches 0 from the right (positive side). For \( x > 0 \), we have \( |x| = x \). Thus, we can rewrite \( f(x) \) as: \[ f(x) = \frac{3x + 4\tan x}{x} = 3 + \frac{4\tan x}{x} \] Now we need to find: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left( 3 + \frac{4\tan x}{x} \right) \] Using the known limit \( \lim_{x \to 0} \frac{\tan x}{x} = 1 \): \[ \lim_{x \to 0^+} f(x) = 3 + 4 \cdot 1 = 7 \] ### Step 2: Find the limit of \( f(x) \) as \( x \) approaches 0 from the left (negative side). For \( x < 0 \), we have \( |x| = -x \). Thus, we can rewrite \( f(x) \) as: \[ f(x) = \frac{3(-x) + 4\tan x}{x} = \frac{-3x + 4\tan x}{x} = -3 + \frac{4\tan x}{x} \] Now we need to find: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left( -3 + \frac{4\tan x}{x} \right) \] Again, using the limit \( \lim_{x \to 0} \frac{\tan x}{x} = 1 \): \[ \lim_{x \to 0^-} f(x) = -3 + 4 \cdot 1 = 1 \] ### Step 3: Check for continuity at \( x = 0 \). For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0) = k \] From our calculations: - \( \lim_{x \to 0^+} f(x) = 7 \) - \( \lim_{x \to 0^-} f(x) = 1 \) Since \( 7 \neq 1 \), the limits from the left and right do not match. Therefore, there is no value of \( k \) that can make \( f(x) \) continuous at \( x = 0 \). ### Conclusion: The function \( f(x) \) is not continuous at \( x = 0 \) for any value of \( k \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:((5|x|+4tanx)/(x),xne0),(k,x=0):} , then f(x) is continuous at x = 0 for

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If (x) {:{(x^(2),x ne "0,"),(4,x=0):} then find whether f(x) is constinuosus at x=0

Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

Let f(x)={{:((log(1+ax)-log(1-bx))/x, x ne 0), (k,x=0):} . Find 'k' so that f(x) is continuous at x = 0.

Let f(x)=(sin x)/(x), x ne 0 . Then f(x) can be continous at x=0, if

Let f(x)={((alpha cotx)/x+beta/x^2 ,, 0<|x|lt=1),(1/3 ,, x=0):} . If f(x) is continuous at x=0 then the value of alpha^2+beta^2 is

Let f (x)= {{:(x ^(n) (sin ""(1)/(x )",") , x ne 0),( 0"," , x =0):} Such that f (x) is continuous at x =0, f '(0) is real and finite, and lim _(x to 0^(+)) f'(x) does not exist. The holds true for which of the following values of n ?

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. If the function f(x) = (1-x) tan ""(pix)/2 is continuous at x =1 th...

    Text Solution

    |

  2. Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x)...

    Text Solution

    |

  3. Let f(x)={:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is co...

    Text Solution

    |

  4. Let f(x)= {:{((x+a) , x lt1),( ax^(2)+1, xge1):} then f(x) is continu...

    Text Solution

    |

  5. If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous a...

    Text Solution

    |

  6. Let f(x) = (x(2^(x)-1))/( 1- cos x) for x ne 0 what choice of f(0)...

    Text Solution

    |

  7. If f(x)={:{([x]+[-x] , xne 0), ( lambda , x =0):} where [.] denotes...

    Text Solution

    |

  8. If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the ...

    Text Solution

    |

  9. Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

    Text Solution

    |

  10. If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1...

    Text Solution

    |

  11. let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is d...

    Text Solution

    |

  12. If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/...

    Text Solution

    |

  13. Let f(x) = x|x| then f'(0) is equal to

    Text Solution

    |

  14. If f(x) =|x| , then f'(0) is

    Text Solution

    |

  15. Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x)...

    Text Solution

    |

  16. If f(x )=sqrt(25-x^(2)), then what is underset(xto1)lim(f(x)-f(1))/(x-...

    Text Solution

    |

  17. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  18. If f(x)=log|x|,xne0 then f'(x) equals

    Text Solution

    |

  19. d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    Text Solution

    |

  20. Differential coefficient of log10 x w.r.t logx 10 is

    Text Solution

    |