Home
Class 12
MATHS
If the function f(x) = (x(e^(sinx) -1))/...

If the function `f(x) = (x(e^(sinx) -1))/( 1 - cos x ) ` is continuous at x =0 then f(0)=

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) for the function \[ f(x) = \frac{x(e^{\sin x} - 1)}{1 - \cos x} \] and ensure that it is continuous at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Identify the limit expression**: Since \( f(x) \) is continuous at \( x = 0 \), we have: \[ f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x(e^{\sin x} - 1)}{1 - \cos x} \] 2. **Use known limits**: We know that: \[ \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Also, we can use the identity \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \). 3. **Rewrite the limit**: Substitute \( 1 - \cos x \) with \( 2 \sin^2\left(\frac{x}{2}\right) \): \[ f(0) = \lim_{x \to 0} \frac{x(e^{\sin x} - 1)}{2 \sin^2\left(\frac{x}{2}\right)} \] 4. **Rearranging the limit**: We can rearrange the limit: \[ f(0) = \frac{1}{2} \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} \cdot \frac{\sin x}{x} \cdot \frac{x}{\sin^2\left(\frac{x}{2}\right)} \] 5. **Evaluate each limit**: - The first limit \( \lim_{x \to 0} \frac{e^{\sin x} - 1}{\sin x} = 1 \). - The second limit \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \). - The third limit can be simplified using the fact that \( \sin\left(\frac{x}{2}\right) \approx \frac{x}{2} \) as \( x \to 0 \): \[ \lim_{x \to 0} \frac{x}{\sin^2\left(\frac{x}{2}\right)} = \lim_{x \to 0} \frac{x}{\left(\frac{x}{2}\right)^2} = \lim_{x \to 0} \frac{x}{\frac{x^2}{4}} = \lim_{x \to 0} \frac{4}{x} = 4 \] 6. **Combine the limits**: Now, substituting these values back into our limit expression: \[ f(0) = \frac{1}{2} \cdot 1 \cdot 1 \cdot 4 = \frac{4}{2} = 2 \] Thus, the value of \( f(0) \) is \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)

If f(x) = (x-e^(x) + cos 2x)/(x^(2)), x ne 0 is continuous at x = 0, then

If function f(x) = (sqrt(1+x) - root(3)(1+x))/(x) is continuous function at x = 0, then f(0) is equal to

Let the function f(x)=x^(2)sin((1)/(x)), AA x ne 0 is continuous at x = 0. Then, the vaue of the function at x = 0 is

Determine the values of a ,\ b ,\ c for which the function f(x)={(sin(a+1)x+sinx)/x , for x 0 is continuous at x=0

Determine the values of a , b , c for which the function f(x)={((sin(a+1)x+sinx)/(x ) ,, x 0):} is continuous at x=0

If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find f(0)

The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuous at x=0 then find the value of k

If the function f: R- {0}-> R given by f(x)=1/x-2/(e^(2x)-1) is continuous at x=0, then find the value of f(0)

If f(x)=(2x+3sinx)/(3x+2sinx),x!=0 is continuous at x=0 , then find f(0)dot

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. Let f(x)={:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is co...

    Text Solution

    |

  2. Let f(x)= {:{((x+a) , x lt1),( ax^(2)+1, xge1):} then f(x) is continu...

    Text Solution

    |

  3. If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous a...

    Text Solution

    |

  4. Let f(x) = (x(2^(x)-1))/( 1- cos x) for x ne 0 what choice of f(0)...

    Text Solution

    |

  5. If f(x)={:{([x]+[-x] , xne 0), ( lambda , x =0):} where [.] denotes...

    Text Solution

    |

  6. If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the ...

    Text Solution

    |

  7. Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

    Text Solution

    |

  8. If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1...

    Text Solution

    |

  9. let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is d...

    Text Solution

    |

  10. If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/...

    Text Solution

    |

  11. Let f(x) = x|x| then f'(0) is equal to

    Text Solution

    |

  12. If f(x) =|x| , then f'(0) is

    Text Solution

    |

  13. Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x)...

    Text Solution

    |

  14. If f(x )=sqrt(25-x^(2)), then what is underset(xto1)lim(f(x)-f(1))/(x-...

    Text Solution

    |

  15. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  16. If f(x)=log|x|,xne0 then f'(x) equals

    Text Solution

    |

  17. d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    Text Solution

    |

  18. Differential coefficient of log10 x w.r.t logx 10 is

    Text Solution

    |

  19. Find (dy)/(dx) if y=log{e^x((x-2)/(x+2))^(3/4)}

    Text Solution

    |

  20. If y=(e^x-e^(-x))/(e^x+e^(-1)),"p r o v et h a t"(dy)/(dx)=1-y^2

    Text Solution

    |