Home
Class 12
MATHS
If f(x)={:{([x]+[-x] , xne 0), ( lambda...

If `f(x)={:{([x]+[-x] , xne 0), ( lambda , x =0):}` where [.] denotes the greatest function , then f(x) is continuous at ` x =0 , " for" lambda `

A

`-1`

B

0

C

1

D

No value is possible

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \lambda \) such that the function \( f(x) \) is continuous at \( x = 0 \). The function is defined as follows: \[ f(x) = \begin{cases} [x] + [-x] & \text{if } x \neq 0 \\ \lambda & \text{if } x = 0 \end{cases} \] where \([x]\) denotes the greatest integer function (also known as the floor function). ### Step 1: Evaluate the limit as \( x \) approaches 0 from the right (\( x \to 0^+ \)) For \( x \) approaching 0 from the right, \( x \) is a small positive number. Therefore, we have: \[ [x] = 0 \quad \text{(since } x \text{ is between 0 and 1)} \] \[ [-x] = -1 \quad \text{(since } -x \text{ is between -1 and 0)} \] Thus, \[ f(x) = [x] + [-x] = 0 + (-1) = -1 \quad \text{for } x \to 0^+ \] ### Step 2: Evaluate the limit as \( x \) approaches 0 from the left (\( x \to 0^- \)) For \( x \) approaching 0 from the left, \( x \) is a small negative number. Therefore, we have: \[ [x] = -1 \quad \text{(since } x \text{ is between -1 and 0)} \] \[ [-x] = 0 \quad \text{(since } -x \text{ is between 0 and 1)} \] Thus, \[ f(x) = [x] + [-x] = -1 + 0 = -1 \quad \text{for } x \to 0^- \] ### Step 3: Evaluate \( f(0) \) From the definition of the function, we have: \[ f(0) = \lambda \] ### Step 4: Set the limits equal to ensure continuity For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0) \] From our previous evaluations, we found: \[ \lim_{x \to 0^+} f(x) = -1 \] \[ \lim_{x \to 0^-} f(x) = -1 \] \[ f(0) = \lambda \] Setting these equal gives: \[ -1 = \lambda \] ### Conclusion Thus, the value of \( \lambda \) that makes \( f(x) \) continuous at \( x = 0 \) is: \[ \lambda = -1 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Consider f(x)={{:([x]+[-x],xne2),(lambda,x=2):} where [.] denotes the greatest integer function. If f(x) is continuous at x=2 then the value of lambda is equal to

if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne 0) ,( 0,, x=0):} where [.] denotes the greatest integer function then

If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the greatest integer function, then:

The function f(x)={x} , where [x] denotes the greatest integer function , is continuous at

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Let f(x)={{:(,sum_(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [.] denotes the greatest integer function. The value of k for which is continuous at x=0, is

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. If the function f(x) = (x(e^(sinx) -1))/( 1 - cos x ) is continuous a...

    Text Solution

    |

  2. Let f(x) = (x(2^(x)-1))/( 1- cos x) for x ne 0 what choice of f(0)...

    Text Solution

    |

  3. If f(x)={:{([x]+[-x] , xne 0), ( lambda , x =0):} where [.] denotes...

    Text Solution

    |

  4. If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the ...

    Text Solution

    |

  5. Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

    Text Solution

    |

  6. If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1...

    Text Solution

    |

  7. let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is d...

    Text Solution

    |

  8. If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/...

    Text Solution

    |

  9. Let f(x) = x|x| then f'(0) is equal to

    Text Solution

    |

  10. If f(x) =|x| , then f'(0) is

    Text Solution

    |

  11. Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x)...

    Text Solution

    |

  12. If f(x )=sqrt(25-x^(2)), then what is underset(xto1)lim(f(x)-f(1))/(x-...

    Text Solution

    |

  13. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  14. If f(x)=log|x|,xne0 then f'(x) equals

    Text Solution

    |

  15. d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    Text Solution

    |

  16. Differential coefficient of log10 x w.r.t logx 10 is

    Text Solution

    |

  17. Find (dy)/(dx) if y=log{e^x((x-2)/(x+2))^(3/4)}

    Text Solution

    |

  18. If y=(e^x-e^(-x))/(e^x+e^(-1)),"p r o v et h a t"(dy)/(dx)=1-y^2

    Text Solution

    |

  19. If y=ae^(mx)+be^(-mx) then (d^2y)/(dx^2) is

    Text Solution

    |

  20. If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

    Text Solution

    |