Home
Class 12
MATHS
If f(x) = {:{(px^(2)-q, x in [0,1)), ( ...

If ` f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):}`
and `f(1) =2` , then the value of the pair `( p,q)` for which `f(x)` cannot be continuous at `x =1` is:

A

(a) `(2,0)`

B

(b) `(1,-1)`

C

(c) `(4,2)`

D

(d) `(1,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) and determine the conditions under which it cannot be continuous at \( x = 1 \). ### Step 1: Define the function The function is defined as follows: \[ f(x) = \begin{cases} px^2 - q & \text{for } x \in [0, 1) \\ 2 & \text{for } x = 1 \\ x + 1 & \text{for } x \in (1, 2] \end{cases} \] ### Step 2: Evaluate \( f(1) \) From the problem, we know that \( f(1) = 2 \). ### Step 3: Find the right-hand limit as \( x \) approaches 1 To find the right-hand limit as \( x \) approaches 1, we evaluate: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x + 1) = 1 + 1 = 2 \] ### Step 4: Find the left-hand limit as \( x \) approaches 1 To find the left-hand limit as \( x \) approaches 1, we evaluate: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (px^2 - q) = p(1)^2 - q = p - q \] ### Step 5: Set up the condition for discontinuity For \( f(x) \) to be discontinuous at \( x = 1 \), the left-hand limit must not equal the value of the function at that point: \[ p - q \neq f(1) = 2 \] This gives us the inequality: \[ p - q \neq 2 \] ### Step 6: Analyze the given options We need to check which pairs \( (p, q) \) from the options lead to \( p - q \neq 2 \): 1. **Option A:** \( (2, 0) \) \[ 2 - 0 = 2 \quad \text{(not valid)} \] 2. **Option B:** \( (1, -1) \) \[ 1 - (-1) = 1 + 1 = 2 \quad \text{(not valid)} \] 3. **Option C:** \( (4, 2) \) \[ 4 - 2 = 2 \quad \text{(not valid)} \] 4. **Option D:** \( (1, 1) \) \[ 1 - 1 = 0 \quad \text{(valid)} \] ### Conclusion The only pair \( (p, q) \) for which \( f(x) \) cannot be continuous at \( x = 1 \) is: \[ \boxed{(1, 1)} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,ax^(2)-b,ale xlt 1),(,2,x=1),(,x+1,1 le xle2):} then the value of the pair (a,b) for which f(x) cannot be continuous at x=1, is

Find the value of a for which f(x)={x^2,x in Q x+a ,x !in Q is not continuous at any xdot

If f(x)=x^2+x+1 , then find the value of 'x' for which f(x-1) =f(x)

if f(x)=x^2sin(1/x) , x!=0 then the value of the function f at x=0 so that the function is continuous at x=0

If f(x)={(ax^2+b ,0lex<1),(4,x=1),(x+3,1ltxge2)) then the value of (a ,b) for which f(x) cannot be continuous at x=1, is (a) (2,2) (b) (3,1) (c) (4,0) (d) (5,2)

Find the value of ' a ' if the function f(x) defined by f(x)={2x-1,\ \ \ x 2 is continuous at x=2

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

If f(x) = px +q, where p and q are integers f (-1) = 1 and f (2) = 13, then p and q are

The value of f (0), such that f( x) =( 1)/(x^(2)) ( 1 -cos( sin x )) can be made continuous at x=0 , is

The value of 'a' for which f(x)= {((sin^2 ax)/(x^2)", " x ne 0 ),(1", "x=1):} is continuous at x=0 , is

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the ...

    Text Solution

    |

  2. Let f(x) = sin"" 1/x, x ne 0 Then f(x) can be continuous at x =0

    Text Solution

    |

  3. If f(x) = {:{(px^(2)-q, x in [0,1)), ( x+1 , x in (1,2]):} and f(1...

    Text Solution

    |

  4. let f(x) = {:{( x^(2) , x le 0) , ( ax , x gt 0):} then f (x) is d...

    Text Solution

    |

  5. If f is derivable at x =a,then underset(xto a ) lim( (xf(a) -af( x))/...

    Text Solution

    |

  6. Let f(x) = x|x| then f'(0) is equal to

    Text Solution

    |

  7. If f(x) =|x| , then f'(0) is

    Text Solution

    |

  8. Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x)...

    Text Solution

    |

  9. If f(x )=sqrt(25-x^(2)), then what is underset(xto1)lim(f(x)-f(1))/(x-...

    Text Solution

    |

  10. if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

    Text Solution

    |

  11. If f(x)=log|x|,xne0 then f'(x) equals

    Text Solution

    |

  12. d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    Text Solution

    |

  13. Differential coefficient of log10 x w.r.t logx 10 is

    Text Solution

    |

  14. Find (dy)/(dx) if y=log{e^x((x-2)/(x+2))^(3/4)}

    Text Solution

    |

  15. If y=(e^x-e^(-x))/(e^x+e^(-1)),"p r o v et h a t"(dy)/(dx)=1-y^2

    Text Solution

    |

  16. If y=ae^(mx)+be^(-mx) then (d^2y)/(dx^2) is

    Text Solution

    |

  17. If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

    Text Solution

    |

  18. If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  19. Differentiate the following w.r.t.x. The differentiation coneffiecient...

    Text Solution

    |

  20. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |